

-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966

Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID : 4073614 UR NO. : 6339649 Collection Date : 18-Feb-2025 Received Date: 24-Feb-2025



4073614

## COMPLETE MICROBIOME MAPPING

| General Macic | scopic Descriptio   | ···                                                                                                                                                                             |
|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Result              | Markers                                                                                                                                                                         |
| Stool Colour  | Brown               | <b>Colour</b> - Brown is the colour of normal stool. Other colours may indicate abnormal gut health.                                                                            |
| Stool Form    | Semiformed          | <b>Form</b> -Sample form is categorised using the Bristol stool chart. A comment on stool appearance can be found in the comments section.                                      |
| Mucous        | <b>Not Detected</b> | <b>Mucous</b> - Mucous production may indicate the presence of an infection and/or inflammation.                                                                                |
| Occult Blood  | Negative            | <b>Blood (Macro)</b> - The presence of blood in the stool may be the result of several causes besides colorectal bleeding, including hemorrhoids or gastrointestinal infection. |

| Short Chain Fatty Acids             | Result        | Range       | Units  |   |
|-------------------------------------|---------------|-------------|--------|---|
| Methodology: GC/MS                  |               |             |        |   |
| Short Chain Fatty Acids, Beneficial | 14.8          | > 13.6      | umol/g | • |
| Butyrate                            | <i>8.5</i> *L | 10.8 - 33.5 | %      | • |
| Acetate                             | 61.4          | 44.5 - 72.4 | %      |   |
| Propionate                          | 28.8          | 0.0 - 32.0  | %      |   |
| Valerate                            | 1.2           | 0.5 - 7.0   | %      |   |

| GIT Functional Markers                     | Result   | Range         | Units        |   |
|--------------------------------------------|----------|---------------|--------------|---|
| Methodology: FEIA, EIA, CLIA, pH electrode |          |               |              |   |
| Calprotectin.                              | 38.0     | 0.0 - 50.0    | ug/g         |   |
| Pancreatic Elastase                        | >800.0   | > 200.0       | ug/g         |   |
| Secretory (slgA)                           | 418.1 *L | 510.0 - 2040. | 0 ng/mL      | • |
| Zonulin                                    | 76.3     | 0.0 - 107.0   | ng/mL        |   |
| Beta glucuronidase                         | 2157.3   | 368.0 - 6266. | <b>0</b> U/g | • |
| Steatocrit                                 | 2.0      | 0.0 - 10.0    | %            |   |
| a-Transglutaminase IgA                     | <20      | 0.0 - 100.0   | units/L      |   |
| pH                                         | 6.8      | 6.3 - 7.7     |              | • |

## Microbiome Mapping Summary

| Parasites & Worms                                   | Bacteria & Viruses         | Mycology            |
|-----------------------------------------------------|----------------------------|---------------------|
|                                                     | Methanobrevibacter smithii | Geotrichum species. |
|                                                     |                            |                     |
|                                                     |                            |                     |
|                                                     |                            |                     |
|                                                     |                            |                     |
| Key Phyla Microbiota Firmicutes:Bacteroidetes Ratio | <b>0.64</b> < 1.00 RATIO   |                     |

Relative Commensal Abundance of the 6 Phyla groups can be found on page 6 of this report

Printed: 04/Mar/25 15:19



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## **GARRY PAGE 24-May-1966**

P.O. BOX 5 PINGELLY WA 6308

LAB ID : 4073614 UR NO. : 6339649 Collection Date : 18-Feb-2025 Received Date: 24-Feb-2025



4073614

| arasites and Worms.      | Result                                                           | Range | Units       |   |
|--------------------------|------------------------------------------------------------------|-------|-------------|---|
| Parasitic Organisms      |                                                                  |       |             |   |
| Cryptosporidium species  | <dl< td=""><td>&lt; 1.0</td><td>x10^5 org/g</td><td></td></dl<>  | < 1.0 | x10^5 org/g |   |
| Entamoeba histolytica.   | <dl< td=""><td>&lt; 1.0</td><td>x10^5 org/g</td><td>•</td></dl<> | < 1.0 | x10^5 org/g | • |
| Giardia intestinalis     | <dl< td=""><td>&lt; 1.0</td><td>x10^5 org/g</td><td>•</td></dl<> | < 1.0 | x10^5 org/g | • |
| Blastocystis hominis.    | <dl< td=""><td>&lt; 1.0</td><td>x10^5 org/g</td><td></td></dl<>  | < 1.0 | x10^5 org/g |   |
| Dientamoeba fragilis.    | <dl< td=""><td>&lt; 1.0</td><td>x10^5 org/g</td><td></td></dl<>  | < 1.0 | x10^5 org/g |   |
| Endolimax nana           | <dl< td=""><td>&lt; 1.0</td><td>x10^5 org/g</td><td></td></dl<>  | < 1.0 | x10^5 org/g |   |
| Entamoeba coli.          | <dl< td=""><td>&lt; 5.0</td><td>x10^5 org/g</td><td></td></dl<>  | < 5.0 | x10^5 org/g |   |
| Pentatrichomonas hominis | <dl< td=""><td>&lt; 1.0</td><td>x10^5 org/g</td><td></td></dl<>  | < 1.0 | x10^5 org/g |   |

Ascaris lumbricoides, Roundworm

Trichuris trichiura, Whipworm

Enterocytozoon spp

Strongyloides spp, Roundworm

Not Detected
Not Detected
Not Detected
Not Detected
Not Detected
Not Detected

Necator americanus, Hookworm Enterobius vermicularis,Pinworm Hymenolepis spp, Tapeworm Taenia species, Tapeworm

Male

Not Detected Not Detected Not Detected Not Detected

Comment: Not Detected results indicate the absence of detectable DNA in the sample for the worms reported. NOTE: Reflex testing is performed on clinically indicated samples

| IOTE: Reflex testing is performed on clinically indicated san portunistic Bacteria/Overgrowth Result | •       | Units       |
|------------------------------------------------------------------------------------------------------|---------|-------------|
| Bacillus species. <dl< th=""><th>&lt; 1.00</th><th>x10^4 CFU/g</th></dl<>                            | < 1.00  | x10^4 CFU/g |
| Enterococcus faecalis <dl< th=""><td>&lt; 1.00</td><td>x10^5 CFU/g</td></dl<>                        | < 1.00  | x10^5 CFU/g |
| Enterococcus faecium <dl< th=""><td>&lt; 1.00</td><td>x10^5 CFU/g</td></dl<>                         | < 1.00  | x10^5 CFU/g |
| Morganella species <dl< th=""><td>&lt; 1.00</td><td>x10^5 CFU/g</td></dl<>                           | < 1.00  | x10^5 CFU/g |
| Pseudomonas species <dl< th=""><td>&lt; 1.00</td><td>x10^4 CFU/g</td></dl<>                          | < 1.00  | x10^4 CFU/g |
| Pseudomonas aeruginosa. <dl< th=""><td>&lt; 3.00</td><td>x10^4 CFU/g</td></dl<>                      | < 3.00  | x10^4 CFU/g |
| Staphylococcus species <dl< th=""><td>&lt; 1.00</td><td>x10^3 CFU/g</td></dl<>                       | < 1.00  | x10^3 CFU/g |
| Staphylococcus aureus <dl< th=""><td>&lt; 5.00</td><td>x10^3 CFU/g</td></dl<>                        | < 5.00  | x10^3 CFU/g |
| Streptococcus agalactiae. <dl< th=""><td>&lt; 3.00</td><td>x10^4 CFU/g</td></dl<>                    | < 3.00  | x10^4 CFU/g |
| Streptococcus anginosus. <dl< th=""><td>&lt; 1.00</td><td>x10^6 CFU/g</td></dl<>                     | < 1.00  | x10^6 CFU/g |
| Streptococcus mutans. 0.19                                                                           | < 1.00  | x10^4 CFU/g |
| Streptococcus oralis. 0.18                                                                           | < 1.00  | x10^6 CFU/g |
| Streptococcus salivarius. <dl< th=""><td>&lt; 5.00</td><td>x10^6 CFU/g</td></dl<>                    | < 5.00  | x10^6 CFU/g |
| Methanobrevibacter smithii 6.06 *H                                                                   | < 1.00  | x10^5 CFU/g |
| Desulfovibrio piger <dl< th=""><th>&lt; 18.00</th><th>x10^6 CFU/g</th></dl<>                         | < 18.00 | x10^6 CFU/g |
| Enterobacter cloacae complex. <dl< th=""><td>&lt; 5.00</td><td>x10^5 CFU/g</td></dl<>                | < 5.00  | x10^5 CFU/g |
| Potential Autoimmune Triggers                                                                        |         |             |
| Citrobacter species. <dl< th=""><td>&lt; 5.00</td><td>x10^4 CFU/g</td></dl<>                         | < 5.00  | x10^4 CFU/g |
| Citrobacter freundii complex. 0.58                                                                   | < 5.00  | x10^4 CFU/g |
| Klebsiella species <dl< th=""><th>&lt; 5.00</th><th>x10^3 CFU/g</th></dl<>                           | < 5.00  | x10^3 CFU/g |
| Klebsiella pneumoniae complex. <dl< th=""><th>&lt; 5.00</th><th>x10^5 CFU/g</th></dl<>               | < 5.00  | x10^5 CFU/g |
| Prevotella copri <dl< th=""><th>&lt; 1.00</th><th>x10^9 CFU/g</th></dl<>                             | < 1.00  | x10^9 CFU/g |
| Proteus species <dl< th=""><td>&lt; 5.00</td><td>x10^5 CFU/g</td></dl<>                              | < 5.00  | x10^5 CFU/g |
| Proteus mirabilis. <dl< th=""><td>&lt; 1.00</td><td>x10^4 CFU/g</td></dl<>                           | < 1.00  | x10^4 CFU/g |
| Fusobacterium species <dl< th=""><td>&lt; 20.00</td><td>x10^4 CFU/g</td></dl<>                       | < 20.00 | x10^4 CFU/g |



-. ASHLEIGH VAN NIEROP **BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076** 

## **GARRY PAGE** 24-May-1966

Male

**P.O. BOX 5 PINGELLY WA 6308** 

LAB ID: 4073614 UR NO.: 6339649 Collection Date: 18-Feb-2025 Received Date: 24-Feb-2025



| Mycology                  | Result                                                  | Range  | Units       |
|---------------------------|---------------------------------------------------------|--------|-------------|
| Candida dubliniensis.     | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida glabrata.         | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida intermedia.       | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida krusei.           | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida lambica.          | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida lusitaniae.       | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida parapsilosis.     | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida tropicalis.       | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida albicans.         | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida famata.           | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida keyfr.            | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Candida lipolytica.       | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Geotrichum species.       | 5.00 *H                                                 | < 1.00 | x10^5 CFU/g |
| Rhodotorula species.      | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |
| Saccharomyces cerevisiae: | <dl< th=""><th>&lt; 1.00</th><th>x10^5 CFU/g</th></dl<> | < 1.00 | x10^5 CFU/g |



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966

Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID : 4073614 UR NO. : 6339649 Collection Date : 18-Feb-2025 Received Date: 24-Feb-2025



Printed: 04/Mar/25 15:19

4073614

| Bacterial Pathogens:                | Result                                                  | Range  | Units       |
|-------------------------------------|---------------------------------------------------------|--------|-------------|
| Aeromonas hydrophila.               | <dl< th=""><th>&lt; 1.00</th><th>x10^3 CFU/g</th></dl<> | < 1.00 | x10^3 CFU/g |
| Campylobacter species.              | <dl< th=""><td>&lt; 1.00</td><td>x10^5 CFU/g</td></dl<> | < 1.00 | x10^5 CFU/g |
| C. difficile, Toxin A               | <dl< th=""><td>&lt; 1.00</td><td>x10^4 CFU/g</td></dl<> | < 1.00 | x10^4 CFU/g |
| C. difficile, Toxin B               | <dl< th=""><td>&lt; 1.00</td><td>x10^4 CFU/g</td></dl<> | < 1.00 | x10^4 CFU/g |
| Enteroaggregative E. coli           | <dl< th=""><td>&lt; 1.00</td><td>x10^3 CFU/g</td></dl<> | < 1.00 | x10^3 CFU/g |
| Enteropathogenic E. coli            | <dl< th=""><td>&lt; 1.00</td><td>x10^3 CFU/g</td></dl<> | < 1.00 | x10^3 CFU/g |
| E. coli O157                        | <dl< th=""><td>&lt; 1.00</td><td>x10^2 CFU/g</td></dl<> | < 1.00 | x10^2 CFU/g |
| Hypervirulent Clostridium difficile | <dl< th=""><td>&lt; 1.00</td><td>x10^3 CFU/g</td></dl<> | < 1.00 | x10^3 CFU/g |
| Enteroinvasive E. coli/Shigella     | <dl< th=""><td>&lt; 1.00</td><td>x10^3 CFU/g</td></dl<> | < 1.00 | x10^3 CFU/g |
| Enterotoxigenic E. coli LT/ST       | <dl< th=""><td>&lt; 1.00</td><td>x10^5 CFU/g</td></dl<> | < 1.00 | x10^5 CFU/g |
| Salmonella species.                 | <dl< th=""><td>&lt; 1.00</td><td>x10^5 CFU/g</td></dl<> | < 1.00 | x10^5 CFU/g |
| Shiga toxigenic E.coli              | <dl< th=""><td>&lt; 1.00</td><td>x10^3 CFU/g</td></dl<> | < 1.00 | x10^3 CFU/g |
| Vibrio species.                     | <dl< th=""><th>&lt; 1.00</th><th>x10^4 CFU/g</th></dl<> | < 1.00 | x10^4 CFU/g |
| Yersinia species.                   | <dl< th=""><td>&lt; 1.00</td><td>x10^5 CFU/g</td></dl<> | < 1.00 | x10^5 CFU/g |
| Helicobacter pylori                 | <dl< th=""><td>&lt; 1.0</td><td>x10^3 CFU/g</td></dl<>  | < 1.0  | x10^3 CFU/g |

Comment: Helico Pylori virulence factors will be listed below if detected POSITIVE

**Not Detected** 

Gene: A2142C

Gene: A2142G

Gene: A2143G

H pylori Virulence Factor, bab A

Not Detected

Not Detected

H.pylori Virulence Factor, babA
H.pylori Virulence Factor, oipA
H.pylori Virulence Factor, oipA
H.pylori Virulence Factor, oipA
H.pylori Virulence Factor, vacA
H.pylori Virulence Factor, vacA
H.pylori Virulence Factor, vacA
Not Detected
H.pylori Virulence Factor, vacA
Not Detected
H.pylori Virulence Factor, vacA
Not Detected

**Units** 

| /iral Pathogens       | Result Range |
|-----------------------|--------------|
| Adenovirus 40/41      | Not Detected |
| Norovirus GI/II       | Not Detected |
| Rotavirus A           | Not Detected |
| Sapovirus (I,II,IV,V) | Not Detected |

Astrovirus (hAstro)



-. ASHLEIGH VAN NIEROP **BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076** 

## **GARRY PAGE** 24-May-1966

Male

**P.O. BOX 5 PINGELLY WA 6308** 

LAB ID: 4073614 UR NO.: 6339649 Collection Date: 18-Feb-2025 **Received Date:** 24-Feb-2025



| Normal Bacterial GUT Flora.  | Result                                                              | Range          | Units         |   |
|------------------------------|---------------------------------------------------------------------|----------------|---------------|---|
| Bacteroides fragilis         | 1.4*L                                                               | 1.6 - 250.0    | x10^5 CFU/g   | • |
| TOTAL BIFIDOBACTERIA         | 0.2*L                                                               | 5.0 - 2000.0   | x10^6 CFU/g   |   |
| Bifidobacterium adolescentis | 0.2 *L                                                              | 4.6 - 1000.0   | x10^6 CFU/g   |   |
| Bifidobacterium bifidum.     | <dl< th=""><th>4.6 - 1000.0</th><th>x10^6 CFU/g</th><th></th></dl<> | 4.6 - 1000.0   | x10^6 CFU/g   |   |
| Bifidobacterium breve.       | <dl< th=""><th>4.6 - 1000.0</th><th>x10^6 CFU/g</th><th></th></dl<> | 4.6 - 1000.0   | x10^6 CFU/g   |   |
| Bifidobacterium longum       | <dl< th=""><th>4.6 - 1000.0</th><th>x10^6 CFU/g</th><th></th></dl<> | 4.6 - 1000.0   | x10^6 CFU/g   |   |
| Enterococcus species         | 3.2                                                                 | 1.9 - 2000.0   | x10^3 CFU/g   |   |
| Escherichia species          | 478.2                                                               | 3.7 - 3800.0   | x10^4 CFU/g   | • |
| TOTAL LACTOBACILLI           | 10.5                                                                | 1.7 - 3000.0   | x10^3 CFU/g   | • |
| Lactobacillus acidophilus.   | <dl< th=""><th>1.7 - 500.0</th><th>x10^3 CFU/g</th><th></th></dl<>  | 1.7 - 500.0    | x10^3 CFU/g   |   |
| Lactobacillus casei.         | 10.4                                                                | 1.7 - 500.0    | x10^3 CFU/g   |   |
| Lactobacillus delbrueckii    | 0.1 *L                                                              | 1.7 - 500.0    | x10^3 CFU/g   |   |
| Lactobacillus plantarum.     | <dl< th=""><th>1.7 - 500.0</th><th>x10^3 CFU/g</th><th></th></dl<>  | 1.7 - 500.0    | x10^3 CFU/g   |   |
| Lactobacillus rhamnosus      | <dl< th=""><th>1.7 - 500.0</th><th>x10^3 CFU/g</th><th></th></dl<>  | 1.7 - 500.0    | x10^3 CFU/g   |   |
| Lactobacillus salivarius     | <dl< th=""><th>1.7 - 500.0</th><th>x10^3 CFU/g</th><th></th></dl<>  | 1.7 - 500.0    | x10^3 CFU/g   |   |
| Clostridium species          | 33.9                                                                | 5.0 - 50.0     | x10^7 CFU/g   | • |
| Oxalobacter formigenes       | 206.70                                                              | > 5.00         | x10^6 CFU/g   |   |
| Akkermansia muciniphila      | 21.12                                                               | 1.00 - 50.00   | x10^7 CFU/g   | • |
| Faecalibacterium prausnitzii | 265.9                                                               | 100.0 - 3500.0 | 0 x10^6 CFU/g | • |

A total count of Lactobacillus and Bifidobacterium has been included to offer a broad overview of the species present in the microbiome, which may assist in guiding clinical treatment decisions. However, identifying individual strains of Lactobacillus and Bifidobacterium can yield more detailed and clinically specific information, as different strains exhibit distinct physiological effects, as outlined in the probiotics action chart

| Actions                              | L. plantarum HEAL9 | L. paracasel 8700:2 | L. plantarum HEAL19 | L. plantarum 6595 | L. plantarum 299V | L. rhamnosus GG | L. acidophilus LA02 | B. animals subsp. lactis BS01 | L. casei LC03 | B. breve BR03 | L. fermentum LF08 | L. crispatus strains | B. animals subsp. lactis BA05 | L. plantarum LP01 | L. rhamnosus LR06 | B. longum 04 | L. fermentum LF16 | L. salivarius LS01 | B. breve B632 | L. fermentum LF10 | L. salivarius LS03 | L. helveticus Rosell-52 | L. rhamnosus Rosell-11 | B. longums Rosell-75 | S. boulardii CNCM I-1079 | S. thermophilus FP4 |
|--------------------------------------|--------------------|---------------------|---------------------|-------------------|-------------------|-----------------|---------------------|-------------------------------|---------------|---------------|-------------------|----------------------|-------------------------------|-------------------|-------------------|--------------|-------------------|--------------------|---------------|-------------------|--------------------|-------------------------|------------------------|----------------------|--------------------------|---------------------|
| Intestinal epithelial barrier health |                    |                     |                     | •                 | •                 | •               |                     |                               | •             | •             |                   |                      |                               |                   |                   |              |                   | •                  |               |                   |                    | •                       | •                      |                      | •                        |                     |
| Mucous membrane health               |                    |                     |                     | •                 |                   | •               |                     |                               |               |               |                   |                      |                               |                   |                   |              |                   |                    |               |                   |                    |                         | •                      |                      | •                        |                     |
| Normalisation of bowel movements     |                    |                     |                     |                   | •                 | •               | •                   | •                             |               | •             |                   |                      |                               | •                 |                   |              |                   |                    |               |                   |                    | •                       |                        |                      |                          |                     |
| Normalisation of bloating            |                    |                     |                     |                   | •                 | •               | •                   | •                             |               | •             |                   |                      |                               | •                 |                   |              |                   |                    |               |                   |                    |                         |                        |                      |                          |                     |
| Normalisation of peristalsis         |                    |                     |                     |                   | •                 | •               | •                   | •                             |               | •             |                   |                      |                               | •                 |                   |              |                   |                    |               |                   |                    |                         |                        |                      | •                        |                     |
| Autoimmune immunomodulation          | •                  | •                   | •                   |                   | •                 | •               |                     |                               |               |               |                   |                      |                               |                   |                   |              |                   |                    |               |                   |                    |                         |                        |                      |                          |                     |
| Inhibition of pathogenic overgrowth  |                    |                     |                     | •                 | •                 | •               |                     |                               |               | •             |                   |                      |                               |                   |                   |              |                   |                    | •             |                   | •                  | •                       | •                      | •                    | •                        |                     |
| Inactivate microbial toxins          |                    |                     |                     |                   |                   |                 |                     |                               |               |               |                   |                      |                               |                   |                   |              |                   |                    |               |                   |                    |                         |                        |                      | •                        |                     |
| Increase infection resistance        | •                  | •                   |                     | •                 |                   | •               |                     | •                             |               |               |                   |                      |                               |                   |                   |              |                   |                    |               |                   |                    | •                       |                        | •                    | •                        |                     |
| Th1/Th2 immune cell modulation       | _                  |                     |                     |                   |                   | •               |                     |                               |               | •             |                   |                      |                               |                   |                   |              |                   | •                  | •             |                   |                    | •                       | •                      |                      |                          |                     |
| Staphylococci inhibition             |                    |                     |                     |                   |                   |                 |                     |                               |               | •             |                   |                      |                               |                   |                   |              |                   | •                  |               |                   |                    |                         |                        |                      |                          |                     |
| Gut-brain axis support               |                    |                     |                     |                   | •                 |                 |                     |                               |               |               |                   |                      |                               | •                 | •                 | •            | •                 |                    |               |                   |                    | •                       |                        | •                    |                          |                     |
| GABA production                      |                    |                     |                     |                   |                   | •               |                     |                               | •             |               |                   |                      |                               |                   |                   |              |                   |                    |               |                   |                    |                         |                        |                      |                          |                     |
| Bone resorption inhibition           | •                  | •                   | •                   |                   |                   |                 |                     |                               |               |               |                   |                      |                               |                   |                   |              |                   |                    |               |                   |                    |                         |                        |                      |                          |                     |
| E. coli inhibition                   |                    |                     |                     |                   |                   |                 |                     |                               |               | •             |                   |                      |                               | •                 | •                 |              |                   |                    | •             |                   |                    | •                       | •                      | •                    | •                        |                     |
| Oxalate degradation                  |                    |                     |                     |                   |                   | •               | •                   |                               |               |               |                   |                      |                               | •                 |                   |              |                   |                    |               |                   |                    |                         |                        |                      |                          |                     |



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966

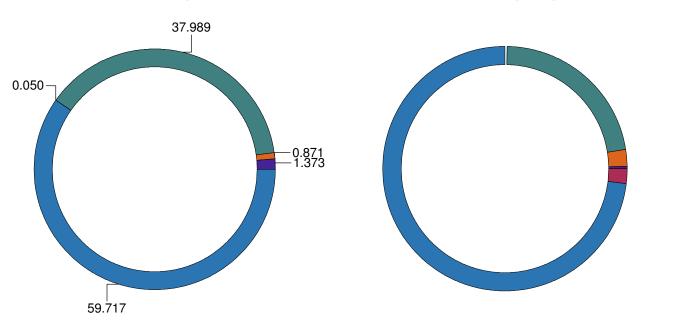
P.O. BOX 5 PINGELLY WA 6308

LAB ID: 4073614 UR NO.: 6339649 Collection Date: 18-Feb-2025 Received Date: 24-Feb-2025



4073614

#### Introduction:


Your gut microbiome is a collective name for the 40 trillion cells and up to 1000 microbial species that include bacteria, viruses, fungi, parasites, and archaea and reside in our gut. The number of gut bacterial cells is approximately equal to the total number of human cells in our body, so if we consider only cell counts, we are only about half human. In terms of gene counts, the microbiome contains about 200 times more genes than the human genome, making bacterial genes responsible for over 99% of our body's gene content! Of all the microbial communities in the human body, the gut microbiome is by far the most dense, diverse, and physiologically important ecosystem to our overall health.

| <b>Relative Commensal Abunda</b> | nce Result      | Range           | Units |
|----------------------------------|-----------------|-----------------|-------|
| Bacteroidetes Phylum             | 59.717          | 50.000 - 95.000 | %     |
| Firmicutes Phylum                | 37.989          | 3.500 - 40.000  | %     |
| Verrucomicrobia Phylum           | 1.373           | 0.000 - 2.400   | %     |
| Proteobacteria Phylum            | 0.871           | 0.050 - 12.500  | %     |
| Euryarchaeota Phylum             | <i>0.050</i> *H | 0.000 - 0.010   | %     |
| Actinobacteria Phylum            | 0.000*L         | 0.001 - 4.818   | %     |

## Your Phyla:

## **Healthy Phyla:**

Male



#### References

NOTE: Relative abundance reference ranges have been based on a healthy population study.

King CH, et., al. (2019) Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One. 2019 Sep 11;14(9):e0206484.



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966 Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID: 4073614 UR NO.: 6339649 Collection Date: 18-Feb-2025 Received Date: 24-Feb-2025



4073614

### Pathogen Summary:

### **Macroscopy Comment**

BROWN coloured stool is considered normal in appearance.

A SEMI-FORMED stool specimen classified as Type 4 on the Bristol Stool Chart is generally considered optimal, indicating balanced gut motility, adequate hydration, and sufficient dietary fibre intake. This stool consistency is often associated with efficient digestion, proper colonic function, and microbial stability. However, while Type 4 stools typically suggest gastrointestinal homeostasis, they do not always correlate with a healthy gut microbiome. Pathogenic bacteria, viral infections, parasitic infestations, or gut dysbiosis may still be present, even in well-formed stools. Clinical recommendations include maintaining a fiber-rich diet with prebiotic and probiotic sources, ensuring consistent hydration, and promoting gut microbial diversity through fermented foods or supplementation.

#### Faecal Occult Blood Negative:

Faecal occult blood has not been detected in this specimen. If the test result is negative and clinical symptoms persist, additional follow-up testing using other clinical methods is recommended.

### **Metabolism Comment**

In a healthy gut Short Chain Fatty Acids (SCFAs) exhibited in the following proportions; Butyrate, Acetate, Propionate (16%:60%:24%).

The primary SCFAs butyrate, propionate and acetate are produced by predominant commensal bacteria via fermentation of soluble dietary fibre and intestinal mucus glycans.

Key producers of SCFAs include Faecalibacterium prausnitzii, Akkermansia mucinphila, Bacteroides fragilis, Bifidobacterium, Clostridium and Lactobacillus Spp.

The SCFAs provide energy for intestinal cells and regulate the actions of specialised mucosal cells that produce anti-inflammatory and antimicrobial factors, mucins that constitute the mucus barriers, and gut active peptides that facilitate appetite regulation and euglycemia. Abnormal SCFAs may be associated with dysbiosis, intestinal barrier dysfunction and inflammatory conditions.

## LOW BUTYRATE LEVEL:

Butyrate is a short chain fatty acid that is extremely important for gut health. It is the main fuel source for gut cells, which helps keep the gut cell barrier intact, can reduce inflammation, and helps control appetite. Low levels of butyrate production have been observed in individuals with inflammatory bowel diseases, insufficient fibre intake, slow transit time, recent antibiotic therapy. Low butyrate may also be associated with an increased risk of colon cancer & constipation.

Consuming foods high in resistant starch has been shown to increase butyrate levels.



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966 Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID : 4073614 UR NO. : 6339649 Collection Date : 18-Feb-2025 Received Date: 24-Feb-2025



4073614

#### **GIT Markers Comment**

PANCREATIC ELASTASE: Normal exocrine pancreatic function.

Pancreatic Elastase reflects trypsin, chymotrypsin, amylase and lipase activity.

This test is not affected by supplements of pancreatic enzymes.

Healthy individuals should be producing >500 ug/g of PE-1 under normal/healthy conditions.

PE-1 levels between 200 - 500 ug/g may indicate suboptimal production.

PE-1 levels <200 ug/g indicate clear inadequate production.

The clinician should therefore consider digestive enzyme supplementation if one or more of the following conditions is present: Loose watery stools, Undigested food in the stools, Post-prandial abdominal pain, Nausea or colicky abdominal pain, Gastroesophageal reflux symptoms, Bloating or food intolerance.

Testing performed by chemiluminescence immunosassay (CLIA).

#### CALPROTECTIN Normal:

Faecal calprotectin values <50 ug/g are not indicative of inflammation in the gastrointestinal tract. Subjects with low faecal calprotectin levels normally do not need to be further investigated by invasive procedures. In patients with strong clinical indications of intestinal inflammation, repeat testing may be useful.

Test performed by Diasorin Liaison XL chemiluminescent immunoassay (CLIA).

#### LOW SECRETORY IGA:

Secretory IgA represents the first line of defence of the gastrointestinal mucosa and is central to the normal function of the gastrointestinal tract as an immune barrier.

Secretory IgA binds to invading microorganisms and toxins and entrap them in the mucus layer or within the epithelial cells, so inhibiting microbial motility, agglutinating the organisms, and neutralising their exotoxins and then assist in their harmless elimination from the body in the faecal flow. sIgA also 'tags' food as acceptable, so low sIgA leads to increased sensitivity to foods. Several studies link stress and emotionality with levels of sIgA. Production is adversely affected by stress, which is mediated by cortisol levels.

Often low levels of Secretory IgA correlates with low beneficial flora levels and an increase in pathogenic and parasitic organism being present.

Treatment: Investigate the root cause and rule out parasitic organisms or pathogenic bacteria. Consider the use of probiotics (saccharomyces boulardii), choline, essential fatty acids, glutathione, glycine, glutamine, phosphatidylcholine, Vitamin C and Zinc which are all required for efficient production of Secretory IgA.

PLEASE NOTE: A low Secretory IgA should be reviewed in conjunction with the stool formation. An artefactually low level may be due to fluid dilution effects in a watery or unformed/loose stool sample.

## ZONULIN HIGH NORMAL:

Zonulin is a protein that modulates intestinal barrier function and can also be considered as a potential inflammatory marker. Although this result is within range, the result should be interpreted with patient clinical symptoms as well as reviewing the presence of other proteobacteria that may be the result of increased Zonulin.

#### beta-GLUCORONIDASE NORMAL:

B-Glucuronidase is considered normal and is within reference range.

## **Opportunistic Bacteria Comment**

METHANOBREVIBACTER SMITHII ELEVATED:

PHYLUM: Euryarchaeota

## DESCRIPTION:

Methanobrevibacter smithii is a methane-producing microbe that plays an important role in the gut ecosystem by facilitating carbohydrate fermentation and production of short-chain fatty acids by commensal bacteria. Elevated levels may be associated with abdominal bloating, constipation, flatulence, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), colorectal cancer, diverticulosis or obesity and often correlate with a positive SIBO test.

Methanobrevibacter smithii has also been closely correlated with the presence of Blastocystis hominis.

### TREATMENT SUGGESTIONS:

Elimination of methanogenic flora using antibiotic treatment may contribute to therapeutic benefits and include neomycin or rifaximin. Antimicrobial herbs may also be beneficial in treatment (including garlic and oregano). Rule out allergy to above medication before prescribing/taking.

Page 8 of 14 Complete Microbiome Map V2 Lab ID: 4073614 Patient Name: GARRY PAGE Printed: 04/Mar/25 15:19



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966 Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID: 4073614 UR NO.: 6339649 Collection Date: 18-Feb-2025 Received Date: 24-Feb-2025



4073614

## **Fungi/Yeasts Comment**

GEOTRICHUM SPECIES ELEVATED:

PHYLUM: Ascomycota

#### **DESCRIPTION:**

Geotrichum species are fungi that can be found in the gut and other body sites. They are generally considered harmless in healthy individuals but can cause symptoms like gas, bloating, and loose stools when overgrown. Geotrichum has the potential to become opportunistic, causing superficial or systemic infections in immunocompromised hosts.

TREATMENT SUGGESTIONS: If treatment is warranted, treatments may include iodine therapy, nystatin, amphotericin B or Azole drugs including isoconazole and clotrimazole. Rule out allergy to above medication before prescribing/taking.



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966 Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID: 4073614 UR NO.: 6339649 Collection Date: 18-Feb-2025 Received Date: 24-Feb-2025



4073614

## **Phyla Microbiota Comment**

ACTINOBACTERIA (PHYLUM) LOW:

#### DESCRIPTION

Actinobacteria are a phylum of gram-positive bacteria and although representing a small percentage of gastrointestinal flora, are pivotal in the maintenance of gut homeostasis. Bifidobacterium is the most common species found in the gastrointestinal tract and are widely used as a probiotic, demonstrating beneficial effects in many pathological conditions and helps maintain the mucosal barrier and reduce lipopolysaccharide in the intestine. Decreased actinobacteria colonisation is usually seen with ageing, with antibiotic use or with pathogenic infection.

TREATMENT SUGGESTIONS: Probiotic use and dietary modification use my assist in the rebalancing of microbial flora.

EURYARCHAEOTA (PHYLUM) ELEVATED:

### **DESCRIPTION:**

Euryarchaeota are a phylum of a diverse range of bacteria, including methanogens, halophiles and sulfate-reducers. Three distinct species within the group of Euryarchaeota have been regularly detected within the human body. Among these is the primary colonizer of the human gut system Methanobrevibacter smithii and the less frequently found species Methanosphaera stadtmanae, while in the oral cavity M. oralis is the predominating methanogenic species. Methanogens support the growth of fermenting bacteria, which themselves could be either true pathogens or at least opportunistic pathogens but also members of the commensal flora.

They may also transform heavy metals or metalloids into volatile methylated derivatives which are known to be more toxic than the original compounds. Elevated Euryarchaeota may be associated with inflammatory bowel disease, Crohn's, irritable bowel syndrome, colorectal cancer, diverticulosis, and obesity. It may also affect short chain fatty acid production and absorption.

TREATMENT SUGGESTIONS: If treatment is warranted, Statins may be used to inhibit methanogenic archaea growth without affecting bacterial numbers. Symptoms may also be treated with dietary modification (low FODMAP) and probiotics.

A lactulose SIBO test may be considered to assess Methanogen levels.



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966 Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID : 4073614 UR NO. : 6339649 Collection Date : 18-Feb-2025 Received Date: 24-Feb-2025



4073614

#### **Normal Bacterial Flora Comment**

BACTEROIDES FRAGILIS LOW:

PHYLUM: Bacteroidetes

DESCRIPTION: Bacteroides fragilis is an anaerobic, Gram-negative bacterium. It is part of the normal microbiota of the human colon and is generally commensal. Bacteroides fragilis plays an intricate role in the human colon and usually has a beneficial relationship with the host. Low Bacteroides fragilis levels have been associated with inflammatory bowel disease and Crohn's.

TREATMENT SUGGESTIONS: Treatment may involve the use of probiotics and dietary modification.

BIFIDOBACTERIUM ADOLESCENTIS LOW:

PHYLUM: Actinobacteria

#### DESCRIPTION:

Bifidobacterium adolescentis is an anaerobic species of bacteria found in the gastrointestinal tracts of humans. It is one of the most abundant and prevalent Bifidobacterium species commonly found in adults. It contributes to the production of GABA, a neurotransmitter that plays a role in reducing stress and anxiety. Some strains can synthesise B vitamins, such as folic acid. B. adolescentis enhances the growth of all bifidobacteria.

### TREATMENT SUGGESTIONS:

Consider a probiotic supplement containing B. adolescentis and consuming prebiotic-rich foods like garlic, onions, and whole grains. Increase dietary fibre from fruits, vegetables, and legumes, and incorporate fermented foods such as yogurt and kefir.

### BIFIDOBACTERIUM BIFIDUM LOW:

PHYLUM: Actinobacteria

#### **DESCRIPTION:**

Bifidobacterium bifidum is a Gram-positive, anaerobic bacterium integral to the human gut microbiota, especially in infants. It ferments a variety of carbohydrates, including human milk oligosaccharides, aiding in digestion, and promoting a healthy gut flora. B. bifidum produces short-chain fatty acids that lower gut pH and inhibit pathogenic bacteria while supporting intestinal cells. It also modulates the immune system, enhancing immune responses and reducing inflammation, and strengthens the intestinal barrier. Clinically, B. bifidum has shown promise in alleviating gastrointestinal disorders.

### BIFIDOBACTERIUM BREVE LOW:

PHYLUM: Actinobacteria

#### DESCRIPTION:

Bifidobacterium breve is a Gram-positive, anaerobic bacterium that is commonly found in the human gastrointestinal tract, particularly in the intestines of infants. B. breve is known for its ability to metabolise various carbohydrates, including human milk oligosaccharides, which is essential for the development of a healthy gut flora in newborns.

Studies demonstrate that B. breve exhibits several beneficial properties, including the production of short-chain fatty acids (SCFAs) such as acetate, which contribute to gut health by lowering pH and inhibiting the growth of pathogenic bacteria.

Additionally, B. breve may alleviate symptoms of irritable bowel syndrome (IBS) and improve symptoms of atopic dermatitis.

### BIFIDOBACTERIUM LONGUM LOW:

PHYLUM: Actinobacteria

#### DESCRIPTION:

Bifidobacterium longum is a Gram-positive, catalase-negative, rod-shaped bacterium present in the human gastrointestinal tract and one of the Bifidobacterium species. It can induce and regulate immune responses, reduce the expression of inflammatory cytokines, and maintain the normal intestinal barrier function.

Bifidobacterium longum is a clinically effective, well-established, multifunctional probiotic that has a long history of human use in alleviating gastrointestinal, immunological, and infectious diseases such as constipation, antibiotic associated diarrhoea, irritable bowel syndrome and ulcerative colitis. Low levels may be associated with irritable bowel syndrome, asthma, autism, depressive disorder and with pathogenic bacteria infection.

TREATMENT SUGGESTIONS: Treatment may involve the use of Bifidobacterium longum containing probiotics and treatment of any intestinal infections.



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

## GARRY PAGE 24-May-1966 Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID: 4073614 UR NO.: 6339649 Collection Date: 18-Feb-2025 Received Date: 24-Feb-2025



4073614

#### LACTOBACILLUS ACIDOPHILUS LOW:

PHYLUM: Firmicutes

#### DESCRIPTION.

Lactobacillus acidophilus is a Gram-positive, rod-shaped, non-spore-forming bacterium commonly found in the human gut and fermented foods. It plays a key role in oxalate degradation, bowel normalisation and may assist patients with bloating.

## TREATMENT SUGGESTIONS:

Consider probiotic supplementation containing L. acidophilus.

#### LACTOBACILLUS DELBRUECKII LOW:

PHYLUM: Firmicutes

## DESCRIPTION:

Lactobacillus delbrueckii is a beneficial Gram-positive bacterium commonly found in the gut microbiome and known for its role in maintaining gastrointestinal health. It produces lactic acid through the fermentation of carbohydrates, contributing to a lower gut pH, which inhibits the growth of pathogenic microorganisms such as Clostridium and Candida species. Additionally, L. delbrueckii can enhance the intestinal barrier function and modulate the host immune response by promoting the production of anti-inflammatory cytokines. Its presence in the gut is associated with improved digestion and nutrient absorption, making it an important component in supporting overall gut health and microbial balance.

#### LACTOBACILLUS PLANTARUM LOW:

PHYLUM: Firmicutes

#### **DESCRIPTION:**

Lactobacillus plantarum is a Gram-positive, non-spore-forming, rod-shaped bacterium. L. plantarum plays a crucial role in gut health by enhancing intestinal barrier function, modulating the immune system, and inhibiting pathogenic bacteria. Additionally, it is beneficial for conditions such as irritable bowel syndrome, ulcerative colitis, and high cholesterol.

#### TREATMENT SUGGESTIONS:

Consider probiotic supplementation containing L. plantarum.

## LACTOBACILLUS RHAMNOSUS LOW:

PHYLUM: Firmicutes

#### **DESCRIPTION:**

Lactobacillus Rhamnosus is a Gram-positive anaerobic bacterium and is one of the most widely used probiotic strains, of which various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea and even preventing certain allergic symptoms.

Decreased Lactobacillus rhamnosus colonisation has been shown to decrease gastro-intestinal health, increasing the risk of gastro-intestinal infections and diarrhea as well as extra-intestinal infections including oral and respiratory health. Studies have also revealed that chronic psychological stress and alcohol use may be associated with a decrease in Lactobacillus species, as well as antibiotic / medication use.

TREATMENT SUGGESTIONS: Treatment may involve the use of Lactobacillus containing probiotics and treatment of any intestinal infections.

### LACTOBACILLUS SALIVARIUS LOW:

PHYLUM: Firmicutes

#### **DESCRIPTION:**

Lactobacillus salivarius is a Gram-positive, rod-shaped, non-spore-forming bacterium predominantly found in the human oral cavity, gastrointestinal tract, and vagina. It plays a significant role in maintaining oral and gut health by producing lactic acid and bacteriocins, which inhibit the growth of pathogenic bacteria. L. salivarius enhances gut barrier function, modulates the immune system, and helps in the digestion of proteins and complex carbohydrates. It has been studied for its potential benefits in managing conditions such as irritable bowel syndrome (IBS), periodontal disease, and atopic dermatitis, highlighting its importance in promoting overall health and preventing infections.



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

# GARRY PAGE 24-May-1966 Male

P.O. BOX 5 PINGELLY WA 6308

LAB ID : 4073614 UR NO. : 6339649 Collection Date : 18-Feb-2025 Received Date: 24-Feb-2025



4073614

TREATMENT SUGGESTIONS:

Consider L. salivarius as a probiotic strain which may improve intestinal permeability and immune response.



-.ASHLEIGH VAN NIEROP BIOSOUL NATUROPATHY 5 OZONE TERRACE KALAMUNDA WA 6076

# GARRY PAGE 24-May-1966

P.O. BOX 5 PINGELLY WA 6308

LAB ID : 4073614 UR NO. : 6339649 Collection Date : 18-Feb-2025 Received Date: 24-Feb-2025



Printed: 04/Mar/25 15:19

4073614

Male

## The Four "R" Treatment Protocol

| REMOVE             | Using a course of antimic robial, antibacterial, antiviral or anti parastic therapies in cases where organisms are present. It may also be necessary to remove offending foods, gluten, or medication that may be acting as antagonists.  Consider testing IgG96 foods as a tool for removing offending foods. | ANTIMICROBIAL                          | Oil of oregano, berberine, caprylic acid                                                                                                                                                                                                                                                                 |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                                                | ANTIBAC TERIAL                         | Liquorice, zinc carnosine, mastic gum, tribulus, berberine, black walnut, caprylic acid, oil of oregano                                                                                                                                                                                                  |
|                    |                                                                                                                                                                                                                                                                                                                | ANTIFUNGAL                             | Oil of oregano, caprylic acid, berberine, black walnut                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                | ANTIPARASTIC                           | Artemesia, black walnut, berberine, oil of oregano                                                                                                                                                                                                                                                       |
|                    |                                                                                                                                                                                                                                                                                                                | ANTIVIRAL                              | Cat's claw, berberine, echinacea, vitamin C, vitamin D3, zinc, reishi mushrooms                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                | BIOFILM                                | Oil of oregano, protease                                                                                                                                                                                                                                                                                 |
| REPLACE            | In cases of maldigestion or malabsorption, it may be necessary to restore proper digestion by supplementing with digestive enzymes.                                                                                                                                                                            | DIGESTIVE<br>SUPPORT                   | Betaine hydrochloride, tilactase,<br>amylase, lipase, protease, apple cider<br>vinegar, herbal bitters                                                                                                                                                                                                   |
| REINOCULATE        | Pecolonisation with healthy, beneficial bacteria. Supplementation with probiotics, along with the use of prebiotics helps re-establish the proper microbial balance.                                                                                                                                           | PREBIOTICS                             | Sippery elm, pectin, larch arabinogalactans                                                                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                                                                                                                                | PROBIOTICS                             | Bifidobacterium animalis sup lactise, lactobacillus acidophilus, lactobacillus plantarum, lactobacillus casei, bifidobacterium breve, bifidobacterium bifidum, bifidobacterium longum, lactobacillus salivarius sep salivarius, lactobacillus paracasei, lactobacillus rhamnosus, Saccaromyces boulardii |
| REPAIR & REBALANCE | Pestore the integrity of the gut mucosa by giving support to healthy mucosal cells, as well as immune support. Address whole body health and lifestyle factors so as to prevent future GI dysfunction.                                                                                                         | INTESTINAL<br>MUCOSA<br>IMMUNE SUPPORT | Saccaromycesboulardii, lauric acid                                                                                                                                                                                                                                                                       |
|                    |                                                                                                                                                                                                                                                                                                                | INTESTINAL<br>BARRIER REPAIR           | L-Glutamine, a loe vera, liquorice, marshmallow root, okra, quercetin, slippery elm, zinc camosine, Saccaromyces boulardii, omega 3 essential fatty acids, B vitamins                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                                                | SUPPORT<br>CONSIDERATION               | Seep, diet, exercise, and stress management                                                                                                                                                                                                                                                              |