

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

GEORGETTE ARCHER 09-Apr-1999 Female

possible GIT ulcer, and must always be investigated

7 STRICKLAND AVENUE LINDFIELD NSW 2070

LAB ID : 3812535 UR NO. : 6604296 Collection Date : 02-May-2022 Received Date:03-May-2022

3812535

COMPLETE MICROBIOME MAPPING

General Macroscopic Description						
	Result	Range	Markers			
Stool Colour	Brown		Colour - Brown is the colour of normal stool. Other colours may indicate abnormal GIT conditions.			
Stool Form	Formed		Form -A formed stool is considered normal. Variations to this may indicate abnormal GIT conditions.			
Mucous	NEG	<+	Mucous - Mucous production may indcate the presence of an infection, inflammation or malignancy.			
Occult Blood	NEG	<+	Blood (Macro) - The presence of blood in the stool may indicate			

GIT Functional Markers	Result	Range	Units	
Calprotectin.	3.0	0.0 - 50.0	ug/g	•
Pancreatic Elastase	>500.0	> 200.0	ug/g	
Faecal Secretory IgA	564.0	510.0 - 2010). 0 ug/g	•
Faecal Zonulin	<i>115.0</i> *H	0.0 - 107.0	ng/g	
Faecal B-Glucuronidase	1357.1	337.0 - 4433	3.0 U/g	
Steatocrit	3.0	0.0 - 15.0	%	
anti-Gliadin IgA	<20	0.0 - 100.0	units/L	•

immediately.

Microbiome Mapping Summary

Parasites & Worms

Bacteria & Viruses

Citrobacter freundii.

Fungi and Yeasts

Bacteroidetes	8.96	8.61 - 33.10	x10^11 org/g	
Firmicutes	10.86	5.70 - 30.40	x10^10 org/g	
Firmicutes:Bacteroidetes Ratio	0.12	< 1.00	RATIO	

•

-.ALEXANDRA MIDDLETON **6 EDWARDS BAY ROAD MOSMAN NSW 2088**

GEORGETTE ARCHER 09-Apr-1999 **Female**

7 STRICKLAND AVENUE LINDFIELD NSW 2070

LAB ID: 3812535 UR NO.: 6604296 Collection Date: 02-May-2022 Received Date:03-May-2022

			•	
Parasites and Worms.	Result	Range	Units	
Parasitic Organisms				
Cryptosporidium.	<dl< th=""><th>< 1.0</th><th>x10^6 org/g</th><th></th></dl<>	< 1.0	x10^6 org/g	
Entamoeba histolytica.	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Giardia lamblia.	<dl< th=""><th>< 5.0</th><th>x10^3 org/g</th><th></th></dl<>	< 5.0	x10^3 org/g	
Blastocystis hominis.	<dl< th=""><th>< 2.0</th><th>x10^3 org/g</th><th></th></dl<>	< 2.0	x10^3 org/g	
Dientamoeba fragilis.	<dl< th=""><th>< 1.0</th><th>x10^5 org/g</th><th></th></dl<>	< 1.0	x10^5 org/g	
Endolimax nana	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Entamoeba coli.	<dl< th=""><th>< 5.0</th><th>x10^6 org/g</th><th></th></dl<>	< 5.0	x10^6 org/g	
Pentatrichomonas hominis	<dl< th=""><th>< 1.0</th><th>x10^2 org/g</th><th></th></dl<>	< 1.0	x10^2 org/g	
Worms				
Ancylostoma duodenale, Roundworm	Not De	etected		Comment: Not Detected results indicate
Ascaris lumbricoides, Roundworm	Not De	etected		the absence of detectable DNA in this
Necator americanus, Hookworm	Not De	etected		sample for the worms reported.
Trichuris trichiura, Whipworm	Not De	etected		
Taenia species, Tapeworm		etected		
Enterobius vermicularis,Pinworm	Not De	etected		
Opportunistic Bacteria/Overgr	Result	Range	Units	
Bacillus species.	0.6	< 1.5	x10^5 org/g	•
Enterococcus faecalis	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th>•</th></dl<>	< 1.0	x10^4 org/g	•
Enterococcus faecium	0.1	< 1.0	x10^4 org/g	
Morganella species	<dl< th=""><th>< 1.0</th><th>x10^3 org/g</th><th></th></dl<>	< 1.0	x10^3 org/g	
Pseudomonas species	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Pseudomonas aeruginosa.	<dl< th=""><th>< 5.0</th><th>x10^2 org/g</th><th></th></dl<>	< 5.0	x10^2 org/g	
Staphylococcus species	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Staphylococcus aureus	<dl< th=""><th>< 5.0</th><th>x10^2 org/g</th><th></th></dl<>	< 5.0	x10^2 org/g	
Streptococcus species	8.0	< 1.0	x10^3 org/g	
Methanobacteriaceae	0.36	< 5.00	x10^9 org/g	
Desulfovibrio piger	<dl< th=""><th>0.0 - 18.0</th><th>x10^7 org/g</th><th></th></dl<>	0.0 - 18.0	x10^7 org/g	
Oxalobacter formigenes	17.0	> 15.0	x10^7 org/g	•
Potential Autoimmune Triggers				
Citrobacter species.	<dl< th=""><th>< 5.0</th><th>x10^5 org/g</th><th></th></dl<>	< 5.0	x10^5 org/g	
Citrobacter freundii.	<i>216.8</i> *H		x10^5 org/g	
Klebsiella species	<dl< th=""><th>< 5.0</th><th>x10^3 org/g</th><th></th></dl<>	< 5.0	x10^3 org/g	
Klebsiella pneumoniae.	<dl< th=""><th>< 5.0</th><th>x10^4 org/g</th><th></th></dl<>	< 5.0	x10^4 org/g	
Prevotella copri	<dl< th=""><th>< 1.0</th><th>x10^7 org/g</th><th></th></dl<>	< 1.0	x10^7 org/g	
Proteus species	<dl< th=""><th>< 5.0</th><th>x10^4 org/g</th><th>•</th></dl<>	< 5.0	x10^4 org/g	•
Proteus mirabilis.	<dl< th=""><th>< 1.0</th><th>x10^3 org/g</th><th>•</th></dl<>	< 1.0	x10^3 org/g	•
Fusobacterium species	0.70	< 10.00	x10^7 org/g	
Fungi & Yeast	Result	Range	Units	
Candida species.	4.5	< 5.0	x10^3 org/g	•
Candida albicans.	<dl< th=""><th>< 5.0</th><th>x10^2 org/g</th><th>•</th></dl<>	< 5.0	x10^2 org/g	•
Geotrichum species.	<dl< th=""><th>< 3.0</th><th>x10^2 org/g</th><th>•</th></dl<>	< 3.0	x10^2 org/g	•
Microsporidium species	<dl< th=""><th>< 5.0</th><th>x10^3 org/g</th><th>•</th></dl<>	< 5.0	x10^3 org/g	•
		4.0	v1000 ora/a	

Rhodotorula species.

<dl

< 1.0

x10^3 org/g

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

GEORGETTE ARCHER 09-Apr-1999 Female

7 STRICKLAND AVENUE LINDFIELD NSW 2070

LAB ID : 3812535 UR NO. : 6604296 Collection Date : 02-May-2022 Received Date:03-May-2022

3812535

Bacterial Pathogens	Result	Range	Units
Aeromonas species.	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Campylobacter.	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
C. difficile, Toxin A	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
C. difficile, Toxin B	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Enterohemorrhagic E. coli	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
E. coli O157	<dl< th=""><td>< 1.0</td><td>x10^2 CFU/g</td></dl<>	< 1.0	x10^2 CFU/g
Enteroinvasive E. coli/Shigella	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Enterotoxigenic E. coli LT/ST	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Shiga-like Toxin E. coli stx1	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Shiga-like Toxin E. coli stx2	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Salmonella.	<dl< th=""><td>< 1.0</td><td>x10^4 CFU/g</td></dl<>	< 1.0	x10^4 CFU/g
Vibrio cholerae	<dl< th=""><td>< 1.0</td><td>x10^5 CFU/g</td></dl<>	< 1.0	x10^5 CFU/g
Yersinia enterocolitica.	<dl< th=""><td>< 1.0</td><td>x10^5 CFU/g</td></dl<>	< 1.0	x10^5 CFU/g
Helicobacter pylori	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g

Comment: Helico Pylori virulence factors will be listed below if detected POSITIVE

H.pylori Virulence Factor, babA	Not Detected	H.pylori Virulence Factor, cagA	Not Detected
H.pylori Virulence Factor, dupA	Not Detected	H.pylori Virulence Factor, iceA	Not Detected
H.pylori Virulence Factor, oipA	Not Detected	H.pylori Virulence Factor, vacA	Not Detected
H.pylori Virulence Factor, virB	Not Detected	H.pylori Virulence Factor, virD	Not Detected

Viral Pathogens	Result Range	Units
Adenovirus 40/41	<dl< b=""> < 1.0</dl<>	x10^10 CFU/g
Norovirus GI/II	<dl< b=""> < 1.0</dl<>	x10^7 CFU/g
Bocavirus	<dl< b=""> < 1.0</dl<>	x10^10 CFU/g

Normal Bacterial GUT Flora	Result	Range	Units	
Bacteroides fragilis	3.6	1.6 - 250.0	x10^9 CFU/g	•
Bifidobacterium species	4.1 *L	> 6.7	x10^7 CFU/g	•
Bifidobacterium longum	<i>2.9</i> *L	> 5.2	x10^6 CFU/g	•
Enterococcus species	78.7	1.9 - 2000.0	x10^5 CFU/g	•
Escherichia species	630.2	3.7 - 3800.0	x10^6 CFU/g	•
Lactobacillus species	64.7	8.6 - 6200.0	x10^5 CFU/g	•
Lactobacillus Rhamnosus	<i>3.6</i> *L	8.3 - 885.0	x10^4 CFU/g	•
Clostridium species	19.0	5.0 - 50.0	x10^6 CFU/g	
Enterobacter species	2.0	1.0 - 50.0	x10^6 CFU/g	•
Akkermansia muciniphila	2.48	0.01 - 50.00	x10^3 CFU/g	•
Faecalibacterium prausnitzii	899.9	1.0 - 500000	x10^3 CFU/g	•

Short Chain Fatty Acids	Result	Range	Units	
Short Chain Fatty Acids, Beneficial	19.4	> 13.6	umol/g	•
Butyrate	16.0	10.8 - 33.5	%	•
Acetate	59.8	44.5 - 72.4	%	•
Propionate	21.9	0.0 - 32.0	%	
Valerate	2.3	0.5 - 7.0	%	•

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

GEORGETTE ARCHER 09-Apr-1999 Female

7 STRICKLAND AVENUE LINDFIELD NSW 2070

LAB ID: 3812535 UR NO.: 6604296 Collection Date: 02-May-2022 Received Date:03-May-2022

3812535

Pathogen Summary:

Macroscopy Comment

BROWN coloured stool is considered normal in appearance.

Metabolism Comment

In a healthy gut Short Chain Fatty Acids are exhibited in the following proportions; Butyrate, Acetate, Propionate (16% : 60% : 24%)

VALERATE:

Valerate is a short chain fatty acid that is important for gut health. Although Acetate, propionate, and butyrate make up the most abundant SCFAs in gastrointestinal tract (95%), Valerate and other SCFA's make up the remaining and work optimally when within range.

GIT Markers Comment

PANCREATIC ELASTASE: Normal exocrine pancreatic function.

Pancreatic Elastase reflects trypsin, chymotrypsin, amylase and lipase activity.

This test is not affected by supplements of pancreatic enzymes.

Healthy individuals produce on average 500 ug/g of PE-1. Thus, levels below 500 ug/g and above 200 ug/g suggest a deviation from optimal pancreatic function.

The clinician should therefore consider digestive enzyme supplementation if one or more of the following conditions is present: Loose watery stools, Undigested food in the stools, Post-prandial abdominal pain, Nausea or colicky abdominal pain, Gastroesophageal reflux symptoms, Bloating or food intolerance.

CALPROTECTIN Normal:

Faecal calprotectin values <50 ug/g are not indicative of inflammation in the gastrointestinal tract. Subjects with low faecal calprotectin levels normally do not need to be further investigated by invasive procedures.

FAECAL SECRETORY IgA:

Production of sIgA is important to the normal function of the gastrointestinal mucosa as an immune barrier.

It represents the first line immune defense of the GIT.

Elevated levels are associated with an upregulated immune response.

ELEVATED ZONULIN LEVELS:

Zonulin is a protein that modulates intestinal barrier function. Zonulin release facilitates the opening of tight junctions between the cells of the intestinal lining to allow for passage of nutrients and fluids into the body. However, Zonulin release can be "overstimulated" by certain external factors to cause excessive opening of tight junctions, leading to intestinal hyperpermeability or "leaky gut", inflammation, liver overload, nutrient deficiencies, rheumatoid arthritis and autoimmune disorders.

Identify the possible cause/s (Gut microorganism imbalance or the presence of dietary Gluten/gliadin) and remove to reduce further damage.

If it's gluten for gluten sensitivity or celiac disease, remove gluten.

If bacterial overgrowth or dysbiosis, treat the bacterial overgrowth.

Treatment:

Firstly, fix the gut. Treat/repair the gut before before proceeding with other protocols; nutrients and other supplements can be damaging to the system if they get out of the gut

Follow a grain - free diet for at least 12 months.

Eliminate gluten, sugar, processed food, artificial flavorings, colors, trans fats.

Supplementation:

Caprylic acid, Probiotics, acidophylis and B complex, fish oil, Magnesium D3, CoQ10, Mg Citrate, Boswellia & Curcumin, Milk Thistle,

For patients with chronic digestive issue: Vitamin A, L-Glutamine, Probiotics

Further investigations to consider:

- SIBO Breath Test,
- IgG or IgA 96 Food Sensitivity

Page 4 of 7 Complete Microbiome Map Lab ID: 3812535 Patient Name: GEORGETTE ARCHER Printed: 12/May/22 11:02

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

GEORGETTE ARCHER 09-Apr-1999 Female

7 STRICKLAND AVENUE LINDFIELD NSW 2070

LAB ID: 3812535 UR NO.: 6604296 Collection Date: 02-May-2022 Received Date:03-May-2022

3812535

Opportunistic Bacteria Comment

METHANOBACTERIACEAE:

Family of bacteria-like microbes that produce methane. Facilitates carbohydrate fermentation and short-chain fatty acid production by beneficial bacteria.

LOW levels may indicate reduced production of short-chain fatty acids and may be associated with inflammation. HIGH levels linked to chronic constipation, as well as some types of SIBO and IBS.

DESULFOVIBRIO COMMENT:

Sulfate is present in different concentrations in the intestine dependent on diet. Remnants not absorbed, alongside the presence of lactate, promote the growth of Sulfate reducing bacteria (SRB). Desulfovibrio Piger is the dominant SRB genus and has been implicated in gastrointestinal disorders such as ulcerative colitis via the reduction of sulfate to hydrogen sulphide in the gut. High Delsulfovibrio piger levels serves as an indicator of inflammatory bowel disease.

Treatment options include lowering the intake of sulfate rich foods such as some breads, dried fruits, beers, ciders and wines. Reference: Kushkevych et. Al., J. Clin. Med. 2019, 8, 1054; doi:10.3390/jcm8071054

OXALOBACTER COMMENT:

Oxolate is formed in the liver by amino acid catabolism as well as present in a wide range of foods including tea, coffee, chocolate and certain fruits and vegetables. High concentration of oxalate in the urine is related to the potential formation of calcium oxalate kidney stones. Oxolobacter Formigenes is the main known bacterial species involved in oxalate degradation in the gut. Levels of O. Formigenes tends to decrease with age as well as with the use of antibiotics or other drugs, with low levels identified as a risk factor for calcium oxide stone formation. Treatment options include probiotic treatment and low oxalate diet modification. Urinary oxalate levels can also be monitored by test code 4025 (oxalate urinary).

Reference: Duncan et. al., Applied and Environmental Microbiology, Aug. 2002, p. 3841-3847 Kaufman et. al., J Am Soc Nephrol. 2008 Jun; 19(6): 1197-1203.

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

GEORGETTE ARCHER 09-Apr-1999 Female

7 STRICKLAND AVENUE LINDFIELD NSW 2070

LAB ID: 3812535 UR NO.: 6604296 Collection Date: 02-May-2022 Received Date:03-May-2022

3812535

Potential Autoimmune Comments

ELEVATED CITROBACTER FREUNDII LEVEL:

Sources:

Citrobacter is a gram-negative bacteria in the Enterobacteriaceae family. Common in the environment and may be spread by person-to person contact. Several outbreaks have occurred in babies in hospital units. Isolated from water, fish, animals and food.

Pathogenicity:

Citrobacter is considered an opportunistic pathogen and therefore can be found in the gut as part of the normal flora.

Symptoms:

Citrobacter has occasionally been implicated in diarrheal disease, particularly C. freundii and C. diversus and C. koseri

Treatment

Treatment is not generally required in low amounts. However, where high levels are present and patients are symptomatic. A combination of oregano, plant tannins and oregano has shown high susceptibility.

For further information, refer to the 4R treatment protocol located at the end of this report.

FUSOBACTERIUM SPECIES:

Fusobacterium species is a gram-negative bacteria in the Fusobacteria phylum. The bacteria is a common member of the human oral microbiome, this pro-inflammatory bacterium can also be found in the human gut. In the mouth, high levels are strongly linked to oral hygiene. In the gut, high levels have been observed in individuals with colon cancer and appendicitis.

Sources:

It primarily uses protein as its main source. However, research also shows that it can thrive from sugar.

Treatment:

Antimicrobial botanicals such as berberine, oregano, quercetin, curcumin, green and black tea extracts, blueberry extract, cinnamon and rosemary have shown to decrease levels.

Normal Bacterial Flora Comment

LOW BIFIDOBACTERIUM LEVEL:

Organism of the Actinobacteria phylum.

Low levels may result from low fiber intake or reduced mucosal health. Thrives on a wide variety of prebiotic fibers.

LOW BIFIDOBACTERIUM LONGUM LEVEL:

Bifidobacterium longum is one of the well-established probiotic strains with numerous profound health benefits in humans. Supplementing with Bifidobacterium longum has been effective in alleviating gastrointestinal, immunological and infectious diseases. Increasingly, evidence is accumulating which shows beneficial effects of supplementation with bifidobacteria for the improvement of human health conditions ranging from protection against infection to different extra- and intra-intestinal positive effects. Moreover, bifidobacteria have been associated with the production of a number of potentially health promoting metabolites including short chain fatty acids.

LOW LACTOBACILLUS RHAMNOSUS LEVEL:

Lactobacullus Rhamnosus is a bacteria in the Firmicutes phylum. Lactobacillus rhamnosus is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responsesL. Low levels may be linked to poor digestive health, diarrhea and IBS symptoms.

-.ALEXANDRA MIDDLETON **6 EDWARDS BAY ROAD MOSMAN NSW 2088**

GEORGETTE ARCHER 09-Apr-1999 **Female**

7 STRICKLAND AVENUE LINDFIELD NSW 2070

LAB ID: 3812535 UR NO.: 6604296 Collection Date: 02-May-2022 Received Date:03-May-2022

The Four "R" Treatment Protocol

	Using a course of	ANTIMICROBIAL	Oil of oregano, berberine, caprylic acid
	antimicrobial, antibacterial, antiviral or anti parastic therapies in cases where organisms are present. It may	ANTIBAC TERIAL	Liquorice, zinc camosine, mastic gum, tribulus, berberine, black walnut, caprylic acid, oil of oregano
REMOVE	also be necessary to remove offending foods, gluten, or	ANTIFUNGAL	Oil of oregano, caprylic acid, berberine, black walnut
	medication that may be acting as antagonists.	ANTIPARASTIC	Artemesia, black walnut, berberine, oil of oregano
	Consider testing IgG96 foods as a tool for removing offending foods.	ANTIVIRAL	Cat's claw, berberine, echinacea, vitamin C, vitamin D3, zinc, reishi mushrooms
		BIOFILM	Oil of oregano, protease
REPLACE	In cases of maldigestion or malabsorption, it may be necessary to restore proper digestion by supplementing with digestive enzymes.	DIGESTIVE SUPPORT	Betaine hydrochloride, tilactase, amylase, lipase, protease, apple cider vinegar, herbal bitters
ш	Recolonisation with healthy,	PREBIOTICS	Sippery elm, pectin, larch arabinogalactans
RENOCULATE	beneficial bacteria. Supplementation with probiotics, along with the use of prebiotics helps re-establish the proper microbial balance.	PROBIOTICS	Bifidobacterium animalissup lactise, lactobacillus acidophilus, lactobacillusplantarum, lactobacillus casei, bifidobacterium breve, bifidobacterium bifidum, bifidobacterium longum, lactobacillus salivarius sep salivarius, lactobacillusparacasei, lactobacillus rhamnosus, Saccaromyces boulardii
REBALANCE	Restore the integrity of the gut mucosa by giving support to healthy mucosal cells, as well as immune support. Address whole	INTESTINAL MUCOSA IMMUNE SUPPORT	Saccaromyces boulardii, lauric acid
REPAIR & REBAI	body health and lifestyle factors so asto prevent future GI dysfunction.	INTESTINAL BARRIER REPAIR	L-Glutamine, a loe vera, liquorice, marshmallow root, okra, quercetin, slippery elm, zinc camosine, Saccaromyces boulardii, omega 3 essential fatty acids, B vitamins
REP/		SUPPORT CONSIDERATION	Seep, diet, exercise, and stress management