-.- NUTRISEARCH

P: 1300 688 522 E: info@nutripath.com.au A: PO Box 442 Ashburton VIC 3142 Date of Birth: 19-May-1953

Sex: M

Collected: 18/Dec/2018 Received: 19-Dec-2018

INTERNATIONAL
PATIENT 1000
Lab id: 3576233 UR#:

NUTRISEARCH PRACTITIONER PO BOX 8177 HAVELOCK NORTH HAWKES BAY NEW ZEALAND 1000

INTEGRATIVE MEDICINE

BLOOD - PLASMA

Methylation Profile.

Result

Range

Units

Methionine Metabolism Pathway

S-Adenosyl Methionine (SAMe) is the most active methyl group donor in the body. Endogenously, SAMe is formed in the Methionine Metabolism Pathway (Transmethylation). S-Adenosyl Methionine (SAMe) is formed through a reaction involving the amino acid methionine and ATP.

As SAMe releases methyl groups to the methylation process, it is converted to S-Adenosyl Homocysteine (SAH), which in turn is converted to homocysteine. Thereafter, re-methylation of homocysteine to form methionine is required to continue the Methionine Metabolism Pathway.

Methyl groups are formed through the Folate Metabolism Cycle and donated to homocysteine which is converted to Methionine, which re-enters the Methionine Metabolism Cycle to form SAMe.

Importantly, SAMe functions to promote the following;

synthesis of DNA and RNA synthesis of Glutathione

synthesis of CoQ10, creatine, carnitine

inhibition of Histamine

crucial in neurotransmitter balance

(for Gene Regulation)

(for detoxification & metals removal),

(for energy and mitochondrial function).

(for anti-inflammatory effects)

(for conversion of Serotonin to Melatonin

for promotion of sleep)

S-Adenosyl Methionine S-Adenosyl Homocysteine SAM/SAH Ratio **70.0** *L 86.0 - 145.0 **50.0** *H 10.0 - 22.0

50.0 *H 10.0 - 22.0 **1.4** *L > 4.0 nmol/L nmol/L BATIO

-.- NUTRISEARCH

P: 1300 688 522 E: info@nutripath.com.au A: PO Box 442 Ashburton VIC 3142 Date of Birth: 19-May-1953 Sex: M

Collected: 18/Dec/2018 Received: 19-Dec-2018 INTERNATIONAL

PATIENT 1000 Lab id : **3576233** UR#: NUTRISEARCH PRACTITIONER PO BOX 8177 HAVELOCK NORTH HAWKES BAY NEW ZEALAND 1000

Folate Metabolism Pathway

The Folate Metabolism Pathway is required for the formation of Methyl groups that are utilised in the Methionine Metabolism Pathway for methylation purposes. It is also the regulator of the Methionine Metabolism Pathway.

Foliates are naturally occurring vitamins and are found in numerous foods. In contrast Folic Acid, is a synthetic form of folate.

Methyl groups are acquired from either Trimethylglycine (TMG) or 5methyltetrahydrofolate (5MTHF). The former reaction however only occurs in the kidney and liver, whereas the latter reaction occurs in most cells of the body. Hence, the latter reaction is the preferential pathway.

5MTHF is the most abundant folate form in plasma and as such is the most important form for the methylation process. 5MTHF is converted to THF via the MTR enzyme and the MTHFR enzyme. In the process a Methyl group is donated to homocysteine to form methionine.

The effectiveness of this process is influenced by the genetic polymorphism of the MTHFR enzyme. MTHFR mutations don't allow efficient processing of folic acid to a readily utiliseable form (5MTHF).

FOLINIC ACID (5-formyl THF), is an active and reduced form of folate. In the body, folinic acid may be converted into any of the other active forms of folate. Supplying the body with folinic acid bypasses many of the required metabolic steps, and it is rapidly converted to 5MTHF.

TETRAHYDROFOLATE (THF) is the basic, reduced form of folate from which other forms of reduced folate are made.

Tetrahydrofolate	<i>13.1</i> *H	0.6 - 6.8	nmol/L	
Folinic Acid	25.0	9.0 - 35.5	nmol/L	
5-Methyl Tetrahydrofolate	7.6	6.6 - 39.9	nmol/L	•

-.- NUTRISEARCH

P: 1300 688 522

E: info@nutripath.com.au A: PO Box 442 Ashburton VIC 3142 Date of Birth: 19-May-1953

Sex: M

Collected: 18/Dec/2018 Received: 19-Dec-2018

INTERNATIONAL PATIENT 1000

Lab id: **3576233** UR#:

NUTRISEARCH PRACTITIONER PO BOX 8177 HAVELOCK NORTH HAWKES BAY NEW ZEALAND 1000

Methylation Comments

LOW S-ADENOSYL METHIONINE (SAMe) LEVEL:

SAMe level may be low due to the following;

Inadequate Methionine (the chief substrate for methylation) either through;

1. Inadequate dietary intake (Poor Diet, Vegetarian/Vegan Diet, GIT dysfunction, Hypochlorhydria)

Improve dietary methionine intake (cheeses, dairy, poultry, meats, nuts) combined with magnesium,

Vit B6, folate, Betaine (TMG) and Vit B12 support.

Supplementation with Methionine (Must also include magnesium, Vit B6, folate, Betaine (TMG) and

Vit B12 support).

2. Inadequate Homocysteine metabolism

Possible causes: Use of Niacin (depletes methyl groups), Antacids (depletes Vit B12)

Assess Active B12 and Red Cell Folate levels

- 3. Inadequate Magnesium (chief cofactor for SAMe synthesis)
- 4. Inhibition of enzymic activity or
- genetic/chemical influences.

Consider SAMe supplementation $-200-400 \, \text{mg}$ daily, taken on an empty stomach (capsules should be foil packed to retain potency). Also Methionine, Magnesium, B3 and increase protein intake.

PRECAUTION:

Prior to considering SAMe or Methionine supplementation, ensure concurrently SAH levels are not elevated.

If SAH is elevated, consider firstly improving SAH clearance/metabolism (via Homocysteine) towards Methionine (Methionine Synthesis pathway) or Cysteine/Glutathione (Transulphuration pathway).

Consider TMG (trimethylglycine) or Betaine to lower SAH.

Thereafter consider the use of SAMe or Methionine supplementation.

ELEVATED S-ADENOSYL HOMOCYSTEINE (SAH) LEVEL:

Elevated SAH levels suggest inadequate homocysteine metabolism to methionine. Check Homocysteine levels.

As SAH is a strong inhibitor of the methylation process, its levels need to be regulated.

May be due to NAD cofactor deficiency (B3) or commonly SNPs in AHCY. Consider TMG (trimethylglycine) or Betaine to lower SAH.

LOW METHYLATION INDEX:

Balancing the SAMe/SAH ratio is important to facilitate optimal enzymic activites in the methylation process.

A reduction in this ratio, below the reference range, is reflective of a decrease in methylation activity.

Tests ordered: 5101

(*) Result outside normal reference range

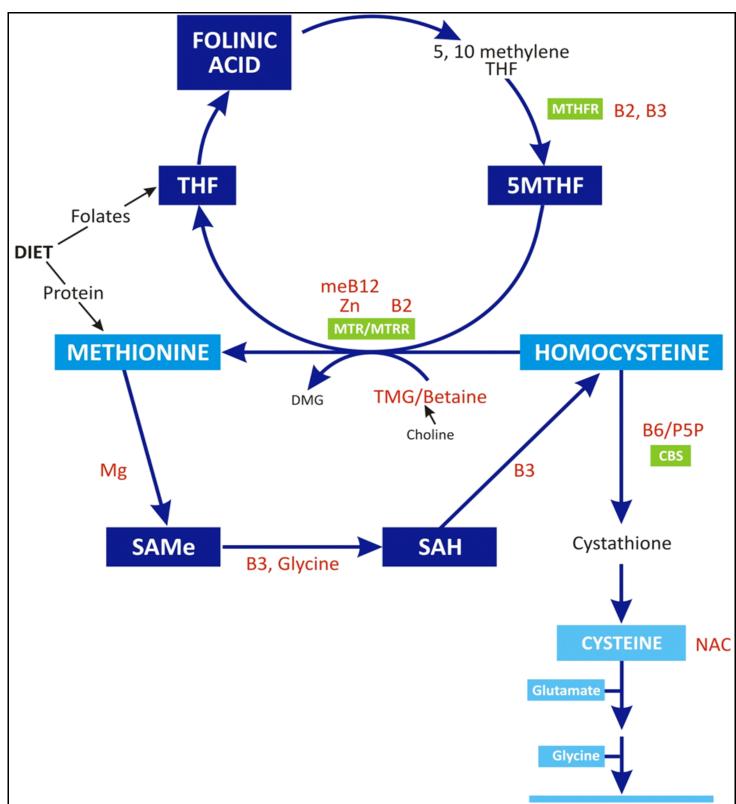
(H) Result is above upper limit of reference rang (L) Result is below lower limit of reference range

Page 3 of 3 Final Report Printed:January 08, 2019

-.- NUTRISEARCH

P: 1300 688 522

E: info@nutripath.com.au A: PO Box 442 Ashburton VIC 3142 Date of Birth: 19-May-1953


Sex: M

Collected: 18/Dec/2018 Received: 19-Dec-2018

INTERNATIONAL PATIENT 1000

Lab id: 3576233 UR#:

NUTRISEARCH PRACTITIONER PO BOX 8177 HAVELOCK NORTH HAWKES BAY NEW ZEALAND 1000

(*) Result outside normal reference range

(H) Result is above upper limit of reference rang (L) Result is below lower limit of reference range

Printed:January 08, 2019

-.- NUTRISEARCH

P: 1300 688 522

E: info@nutripath.com.au A: PO Box 442 Ashburton VIC 3142 Date of Birth: 19-May-1953

Sex: M

Collected: 18/Dec/2018 Received: 19-Dec-2018

INTERNATIONAL PATIENT 1000

Lab id: 3576233 UR#:

NUTRISEARCH PRACTITIONER PO BOX 8177 HAVELOCK NORTH HAWKES BAY NEW ZEALAND 1000

GLUTATHIONE