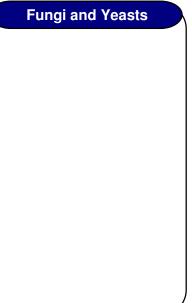


-. ALEXANDRA MIDDLETON **6 EDWARDS BAY ROAD MOSMAN NSW 2088**

JAN BENSON-SATTOUT 28-Apr-1962 **Female**

38 MCMILLIAN CIRCUIT KELLYVILLE NSW 2155

LAB ID: 3815989 UR NO.: 6607340 Collection Date: 17-May-2022 Received Date:18-May-2022


COMPLETE MICROBIOME MAPPING

٩	seneral macroscopic Description								
		Result	Range	Markers					
	Stool Colour	Brown		Colour - Brown is the colour of normal stool. Other colours may indicate abnormal GIT conditions.					
	Stool Form	Semi-formed		Form -A formed stool is considered normal. Variations to this may indicate abnormal GIT conditions.					
	Mucous	NEG	<+	Mucous - Mucous production may indcate the presence of an infection, inflammation or malignancy.					
				Disad (Marcon). The appropriate of bland in the steel area indicate					

Blood (Macro)- The presence of blood in the stool may indicate **NEG** Occult Blood possible GIT ulcer, and must always be investigated immediately.

GIT Functional Markers	Result	Range	Units	
Calprotectin.	3.9	0.0 - 50.0	ug/g	•
Pancreatic Elastase	>500.0	> 200.0	ug/g	
Faecal Secretory IgA	860.9	510.0 - 2010). 0 ug/g	•
Faecal Zonulin	62.0	0.0 - 107.0	ng/g	
Faecal B-Glucuronidase	1808.4	337.0 - 4433	3.0 U/g	
Steatocrit	5.0	0.0 - 15.0	%	
anti-Gliadin IgA	<20	0.0 - 100.0	units/L	•

Microbiome Mappin	g Summary		
Parasites & W	orms	Bacteria & Viruses	Fungi and
Kov Phyla Microbiota			

Key Phyla Microbiota

6.86 *L 8.61 - 33.10 x10^11 org/g **Bacteroidetes Firmicutes** 10.97 5.70 - 30.40 x10^10 org/g Firmicutes:Bacteroidetes Ratio 0.16 < 1.00 **RATIO**

-.ALEXANDRA MIDDLETON **6 EDWARDS BAY ROAD MOSMAN NSW 2088**

Rhodotorula species.

JAN BENSON-SATTOUT Female 28-Apr-1962

38 MCMILLIAN CIRCUIT KELLYVILLE NSW 2155

LAB ID: 3815989 UR NO.: 6607340 Collection Date: 17-May-2022 Received Date:18-May-2022

Parasites and Worms.	Result	Range	Units	
Parasitic Organisms				
Cryptosporidium.	<dl< th=""><th>< 1.0</th><th>x10^6 org/g</th><th></th></dl<>	< 1.0	x10^6 org/g	
Entamoeba histolytica.	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Giardia lamblia.	<dl< th=""><th>< 5.0</th><th>x10^3 org/g</th><th></th></dl<>	< 5.0	x10^3 org/g	
Blastocystis hominis.	<dl< th=""><th>< 2.0</th><th>x10^3 org/g</th><th></th></dl<>	< 2.0	x10^3 org/g	
Dientamoeba fragilis.	<dl< th=""><th>< 1.0</th><th>x10^5 org/g</th><th></th></dl<>	< 1.0	x10^5 org/g	
Endolimax nana	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Entamoeba coli.	<dl< th=""><th>< 5.0</th><th>x10^6 org/g</th><th></th></dl<>	< 5.0	x10^6 org/g	
Pentatrichomonas hominis	<dl< th=""><th>< 1.0</th><th>x10^2 org/g</th><th></th></dl<>	< 1.0	x10^2 org/g	
Worms				
Ancylostoma duodenale, Roundworm	Not D	etected		Comment: Not Detected results indicate
Ascaris lumbricoides, Roundworm	Not Do	etected		the absence of detectable DNA in this
Necator americanus, Hookworm		etected		sample for the worms reported.
Trichuris trichiura, Whipworm		etected		
Taenia species, Tapeworm		etected		
Enterobius vermicularis,Pinworm	Not D	etected		
Opportunistic Bacteria/Overgr	Result	Range	Units	
Bacillus species.	<dl< th=""><th>< 1.5</th><th>x10^5 org/g</th><th></th></dl<>	< 1.5	x10^5 org/g	
Enterococcus faecalis	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Enterococcus faecium	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Morganella species	<dl< th=""><th>< 1.0</th><th>x10^3 org/g</th><th></th></dl<>	< 1.0	x10^3 org/g	
Pseudomonas species	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Pseudomonas aeruginosa.	<dl< th=""><th>< 5.0</th><th>x10^2 org/g</th><th></th></dl<>	< 5.0	x10^2 org/g	
Staphylococcus species	<dl< th=""><th>< 1.0</th><th>x10^4 org/g</th><th></th></dl<>	< 1.0	x10^4 org/g	
Staphylococcus aureus	<dl< th=""><th>< 5.0</th><th>x10^2 org/g</th><th></th></dl<>	< 5.0	x10^2 org/g	
Streptococcus species	8.0	< 1.0	x10^3 org/g	
Methanobacteriaceae	0.96	< 5.00	x10^9 org/g	
Desulfovibrio piger	<dl< th=""><th>0.0 - 18.0</th><th>x10^7 org/g</th><th></th></dl<>	0.0 - 18.0	x10^7 org/g	
Oxalobacter formigenes	25.0	> 15.0	x10^7 org/g	
Potential Autoimmune Triggers				
Citrobacter species.	· -	< 5.0	x10^5 org/g	
Citrobacter freundii.	<dl< th=""><th>< 5.0</th><th>x10^5 org/g</th><th></th></dl<>	< 5.0	x10^5 org/g	
Klebsiella species	<dl< th=""><th>< 5.0</th><th>x10³ org/g</th><th></th></dl<>	< 5.0	x10 ³ org/g	
Klebsiella pneumoniae.	<dl< th=""><th>< 5.0</th><th>x10^4 org/g</th><th>•</th></dl<>	< 5.0	x10^4 org/g	•
Prevotella copri	<dl< th=""><th>< 1.0</th><th>x10^7 org/g</th><th></th></dl<>	< 1.0	x10^7 org/g	
Proteus species	<dl< th=""><th>< 5.0</th><th>x10^4 org/g</th><th></th></dl<>	< 5.0	x10^4 org/g	
Proteus mirabilis.	<dl< th=""><th>< 1.0</th><th>x10^3 org/g</th><th></th></dl<>	< 1.0	x10^3 org/g	
Fusobacterium species	0.46	< 10.00	x10^7 org/g	
Fungi & Yeast	Result	Range	Units	
Candida species.	<dl< th=""><th>< 5.0</th><th>x10^3 org/g</th><th></th></dl<>	< 5.0	x10^3 org/g	
Candida albicans.	<dl< th=""><th>< 5.0</th><th>x10^2 org/g</th><th></th></dl<>	< 5.0	x10^2 org/g	
Geotrichum species.	<dl< th=""><th>< 3.0</th><th>x10^2 org/g</th><th></th></dl<>	< 3.0	x10^2 org/g	
Microsporidium species	<dl< th=""><th>< 5.0</th><th>x10^3 org/g</th><th></th></dl<>	< 5.0	x10^3 org/g	

x10^3 org/g

<dl

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

JAN BENSON-SATTOUT 28-Apr-1962 Female

38 MCMILLIAN CIRCUIT KELLYVILLE NSW 2155

LAB ID : 3815989 UR NO. : 6607340 Collection Date : 17-May-2022 Received Date:18-May-2022

3815989

Bacterial Pathogens	Result	Range	Units
Aeromonas species.	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Campylobacter.	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
C. difficile, Toxin A	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
C. difficile, Toxin B	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Enterohemorrhagic E. coli	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
E. coli O157	<dl< th=""><td>< 1.0</td><td>x10^2 CFU/g</td></dl<>	< 1.0	x10^2 CFU/g
Enteroinvasive E. coli/Shigella	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Enterotoxigenic E. coli LT/ST	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Shiga-like Toxin E. coli stx1	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Shiga-like Toxin E. coli stx2	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g
Salmonella.	<dl< th=""><td>< 1.0</td><td>x10^4 CFU/g</td></dl<>	< 1.0	x10^4 CFU/g
Vibrio cholerae	<dl< th=""><td>< 1.0</td><td>x10^5 CFU/g</td></dl<>	< 1.0	x10^5 CFU/g
Yersinia enterocolitica.	<dl< th=""><td>< 1.0</td><td>x10^5 CFU/g</td></dl<>	< 1.0	x10^5 CFU/g
Helicobacter pylori	<dl< th=""><td>< 1.0</td><td>x10^3 CFU/g</td></dl<>	< 1.0	x10^3 CFU/g

Comment: Helico Pylori virulence factors will be listed below if detected POSITIVE

H.pylori Virulence Factor, babA	Not Detected	H.pylori Virulence Factor, cagA	Not Detected
H.pylori Virulence Factor, dupA	Not Detected	H.pylori Virulence Factor, iceA	Not Detected
H.pylori Virulence Factor, oipA	Not Detected	H.pylori Virulence Factor, vacA	Not Detected
H.pylori Virulence Factor, virB	Not Detected	H.pylori Virulence Factor, virD	Not Detected

Viral Pathogens	Result Range	Units
Adenovirus 40/41	<dl< b=""> < 1.0</dl<>	x10^10 CFU/g
Norovirus GI/II	<dl< b=""> < 1.0</dl<>	x10^7 CFU/g
Bocavirus	<dl< b=""> < 1.0</dl<>	x10^10 CFU/g

Normal Bacterial GUT Flora	Result	Range	Units	
Bacteroides fragilis	1.7	1.6 - 250.0	x10^9 CFU/g	•
Bifidobacterium species	1749.5	> 6.7	x10^7 CFU/g	•
Bifidobacterium longum	1590.5	> 5.2	x10^6 CFU/g	•
Enterococcus species	5.4	1.9 - 2000.0	x10^5 CFU/g	•
Escherichia species	4801.0 *H	3.7 - 3800.0	x10^6 CFU/g	
Lactobacillus species	<i>5.0</i> *L	8.6 - 6200.0	x10^5 CFU/g	•
Lactobacillus Rhamnosus	2.0 *L	8.3 - 885.0	x10^4 CFU/g	•
Clostridium species	10.0	5.0 - 50.0	x10^6 CFU/g	•
Enterobacter species	1.0	1.0 - 50.0	x10^6 CFU/g	•
Akkermansia muciniphila	<i><d1< i=""> *L</d1<></i>	0.01 - 50.00	x10^3 CFU/g	•
Faecalibacterium prausnitzii	1035.4	1.0 - 500000	x10^3 CFU/g	•

Short Chain Fatty Acids	Result	Range	Units	
Short Chain Fatty Acids, Beneficial	37.9	> 13.6	umol/g	
Butyrate	15.4	10.8 - 33.5	%	
Acetate	59.4	44.5 - 72.4	%	
Propionate	23.6	0.0 - 32.0	%	•
Valerate	1.6	0.5 - 7.0	%	• 11

-. ALEXANDRA MIDDLETON **6 EDWARDS BAY ROAD MOSMAN NSW 2088**

JAN BENSON-SATTOUT **Female** 28-Apr-1962

38 MCMILLIAN CIRCUIT KELLYVILLE NSW 2155

LAB ID: 3815989 UR NO.: 6607340 Collection Date: 17-May-2022 Received Date:18-May-2022

Pathogen Summary:

Macroscopy Comment

BROWN coloured stool is considered normal in appearance.

Metabolism Comment

In a healthy gut Short Chain Fatty Acids are exhibited in the following proportions; Butyrate, Acetate, Propionate (16%:60%:24%)

VALERATE:

Valerate is a short chain fatty acid that is important for gut health. Although Acetate, propionate, and butyrate make up the the most abundant SCFAs in gastrointestinal tract (95%), Valerate and other SCFA's make up the remaining and work optimally when within range.

GIT Markers Comment

PANCREATIC ELASTASE: Normal exocrine pancreatic function.

Pancreatic Elastase reflects trypsin, chymotrypsin, amylase and lipase activity.

This test is not affected by supplements of pancreatic enzymes.

Healthy individuals produce on average 500 ug/g of PE-1. Thus, levels below 500 ug/g and above 200 ug/g suggest a deviation from optimal pancreatic function.

The clinician should therefore consider digestive enzyme supplementation if one or more of the following conditions is present: Loose watery stools, Undigested food in the stools, Post-prandial abdominal pain, Nausea or colicky abdominal pain, Gastroesophageal reflux symptoms, Bloating or food intolerance.

CALPROTECTIN Normal:

Faecal calprotectin values <50 ug/g are not indicative of inflammation in the gastrointestinal tract. Subjects with low faecal calprotectin levels normally do not need to be further investigated by invasive procedures.

FAECAL SECRETORY IgA:

Production of sIgA is important to the normal function of the gastrointestinal mucosa as an immune barrier.

It represents the first line immune defense of the GIT.

Elevated levels are associated with an upregulated immune response.

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

JAN BENSON-SATTOUT 28-Apr-1962 Female

38 MCMILLIAN CIRCUIT KELLYVILLE NSW 2155

LAB ID: 3815989 UR NO.: 6607340 Collection Date: 17-May-2022 Received Date:18-May-2022

3815989

Opportunistic Bacteria Comment

METHANOBACTERIACEAE:

Family of bacteria-like microbes that produce methane. Facilitates carbohydrate fermentation and short-chain fatty acid production by beneficial bacteria.

LOW levels may indicate reduced production of short-chain fatty acids and may be associated with inflammation. HIGH levels linked to chronic constipation, as well as some types of SIBO and IBS.

The first in the constitution, as well as some types of

DESULFOVIBRIO COMMENT:

Sulfate is present in different concentrations in the intestine dependent on diet. Remnants not absorbed, alongside the presence of lactate, promote the growth of Sulfate reducing bacteria (SRB). Desulfovibrio Piger is the dominant SRB genus and has been implicated in gastrointestinal disorders such as ulcerative colitis via the reduction of sulfate to hydrogen sulphide in the gut. High Delsulfovibrio piger levels serves as an indicator of inflammatory bowel disease.

Treatment options include lowering the intake of sulfate rich foods such as some breads, dried fruits, beers, ciders and wines. Reference: Kushkevych et. Al., J. Clin. Med. 2019, 8, 1054; doi:10.3390/jcm8071054

OXALOBACTER COMMENT:

Oxolate is formed in the liver by amino acid catabolism as well as present in a wide range of foods including tea, coffee, chocolate and certain fruits and vegetables. High concentration of oxalate in the urine is related to the potential formation of calcium oxalate kidney stones. Oxolobacter Formigenes is the main known bacterial species involved in oxalate degradation in the gut. Levels of O. Formigenes tends to decrease with age as well as with the use of antibiotics or other drugs, with low levels identified as a risk factor for calcium oxide stone formation. Treatment options include probiotic treatment and low oxalate diet modification. Urinary oxalate levels can also be monitored by test code 4025 (oxalate urinary).

Reference: Duncan et. al., Applied and Environmental Microbiology, Aug. 2002, p. 3841-3847 Kaufman et. al., J Am Soc Nephrol. 2008 Jun; 19(6): 1197-1203.

Potential Autoimmune Comments

FUSOBACTERIUM SPECIES:

Fusobacterium species is a gram-negative bacteria in the Fusobacteria phylum. The bacteria is a common member of the human oral microbiome, this pro-inflammatory bacterium can also be found in the human gut. In the mouth, high levels are strongly linked to oral hygiene. In the gut, high levels have been observed in individuals with colon cancer and appendicitis.

Sources:

It primarily uses protein as its main source. However, research also shows that it can thrive from sugar.

Treatment:

Antimicrobial botanicals such as berberine, oregano, quercetin, curcumin, green and black tea extracts, blueberry extract, cinnamon and rosemary have shown to decrease levels.

Phyla Microbiota Comment

LOW BACTEROIDETES LEVEL:

Gram-negative Bacteroidetes are a bacterial phyla that make up a large proportion of the human digestive tract, including the mouth, nose, throat, and colon. A low result in bacteroidetes may suggest imbalanced normal microbes in the GI tract. A lower level of bacteroidetes is considered an unfavourable outcome which allows for the potential of elevated firmicutes leading to a possible imbalanced firmicutes:bacteroidetes ratio.

Treatment:

It is suggested to eat a diverse range of foods including polyphenols. It is further suggested to decrease foods rich in fat and sugar as they encourage firmicute levels to rise. Investigate other causes relating to a low bacteroidetes level.

Normal Bacterial Flora Comment

ELEVATED ESCHERICHIA SPECIES LEVEL:

The Gram-negative genus in the Proteobacteria phylum, which are considered normal gut flora. Escherichia coli (E. coli) is the primary species in this genus. Most E. coli are non-pathogenic. Elevated levels may be indicative of increased intestinal inflammatory activity.

LOW LACTOBACILLUS SPECIES LEVEL:

Lactate-producing bacteria in the Firmicutes phylum.

Page 5 of 7 Complete Microbiome Map Lab ID: 3815989 Patient Name: JAN BENSON-SATTOUT Printed: 20/May/22 13:02

-.ALEXANDRA MIDDLETON 6 EDWARDS BAY ROAD MOSMAN NSW 2088

JAN BENSON-SATTOUT 28-Apr-1962 Female

38 MCMILLIAN CIRCUIT KELLYVILLE NSW 2155

LAB ID: 3815989 UR NO.: 6607340 Collection Date: 17-May-2022 Received Date:18-May-2022

3815989

Low levels may be due to low carbohydrate intake or high salt intake, and may also indicate reduced mucosal health.

LOW LACTOBACILLUS RHAMNOSUS LEVEL:

Lactobacullus Rhamnosus is a bacteria in the Firmicutes phylum. Lactobacillus rhamnosus is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responsesL. Low levels may be linked to poor digestive health, diarrhea and IBS symptoms.

LOW AKKERMANSIA MUCINIPHILA LEVEL:

Akkermansia muciniphila is an organism that lives in the mucus lining of your gut and uses mucus as its primary energy source. This species plays an important role in regulating mucus turnover in the gut so that there is a good balance between mucus breakdown and mucus production. Akkermansia muciniphila promotes healthy intestinal barrier and modulates immune responses.

Low levels of Akkermansia muciniphila has been observed in individuals with IBS, high fat diets, obesity, and type 2 diabetes. Reducing intake of high fat foods may help increase levels of this bacteria.

Page 6 of 7 Complete Microbiome Map Lab ID: 3815989 Patient Name: JAN BENSON-SATTOUT Printed: 20/May/22 13:02

-.ALEXANDRA MIDDLETON **6 EDWARDS BAY ROAD MOSMAN NSW 2088**

JAN BENSON-SATTOUT 28-Apr-1962 **Female**

38 MCMILLIAN CIRCUIT KELLYVILLE NSW 2155

LAB ID: 3815989 UR NO.: 6607340 Collection Date: 17-May-2022 Received Date:18-May-2022

The Four "R" Treatment Protocol

	Using a course of antimic robial, antibacterial,	ANTIMICROBIAL	Oil of oregano, berberine, caprylic acid
	antiviral or anti parasitic therapies in cases where organisms are present. It may also be necessary to remove offending foods, gluten, or	ANTIBAC TERIAL	Liquorice, zinc camosine, mastic gum, tribulus, berberine, black walnut, caprylic acid, oil of oregano
REMOVE		ANTIFUNGAL	Oil of oregano, caprylic acid, berberine, black walnut
	medication that may be acting as antagonists.	ANTIPARASTIC	Artemesia, black walnut, berberine, oil of oregano
	Consider testing IgG96 foods as a tool for removing offending foods.	ANTIVIRAL	Cat's claw, berberine, echinacea, vitamin C, vitamin D3, zinc, reishi mushrooms
		BIOFILM	Oil of oregano, protease
REPLACE	In cases of maldigestion or malabsorption, it may be necessary to restore proper digestion by supplementing with digestive enzymes.	DIGESTIVE SUPPORT	Betaine hydrochloride, tilactase, amylase, lipase, protease, apple cider vinegar, herbal bitters
ш	Recolonisation with healthy, beneficial bacteria. Supplementation with probiotics, along with the use of prebiotics helps re-establish the proper microbial balance.	PREBIOTICS	Sippery elm, pectin, larch arabinogalactans
RENOCULATE		PROBIOTICS	Bifidobacterium animalissup lactise, lactobacillus acidophilus, lactobacillusplantarum, lactobacillus casei, bifidobacterium breve, bifidobacterium bifidum, bifidobacterium longum, lactobacillus salivarius sep salivarius, lactobacillusparacasei, lactobacillus rhamnosus, Saccaromycesboulardii
REBALANCE	Restore the integrity of the gut mucosa by giving support to healthy mucosal cells, as well as immune support. Address whole body health and lifestyle factors so as to prevent future GI dysfunction.	INTESTINAL MUCOSA IMMUNE SUPPORT	Saccaromyces boulardii, lauric acid
రం		INTESTINAL BARRIER REPAIR	L-Glutamine, a loe vera, liquorice, marshmallow root, okra, quercetin, slippery elm, zinc camosine, Saccaromyces boulardii, omega 3 essential fatty acids, B vitamins
REPAIR		SUPPORT CONSIDERATION	Seep, diet, exercise, and stress management