

Specialist Microbiological Laboratory

ABN: 87 682 058 987

5 Little Hyde Street Yarraville, Victoria, 3013 Ph: +61 3 9687 3355 Fax: +61 3 9687 3377 admin@bioscreenmedical.com

Report of Faecal Microbiology

Patient Name:

Lindy GERBER

Address:

401 Belgrave-Gembrook Rd

Emerald VIC 3782

Date of Birth:

22/04/1953

Name of Requesting Practitioner:

Zachariah VARGHESE

Laboratory Number:

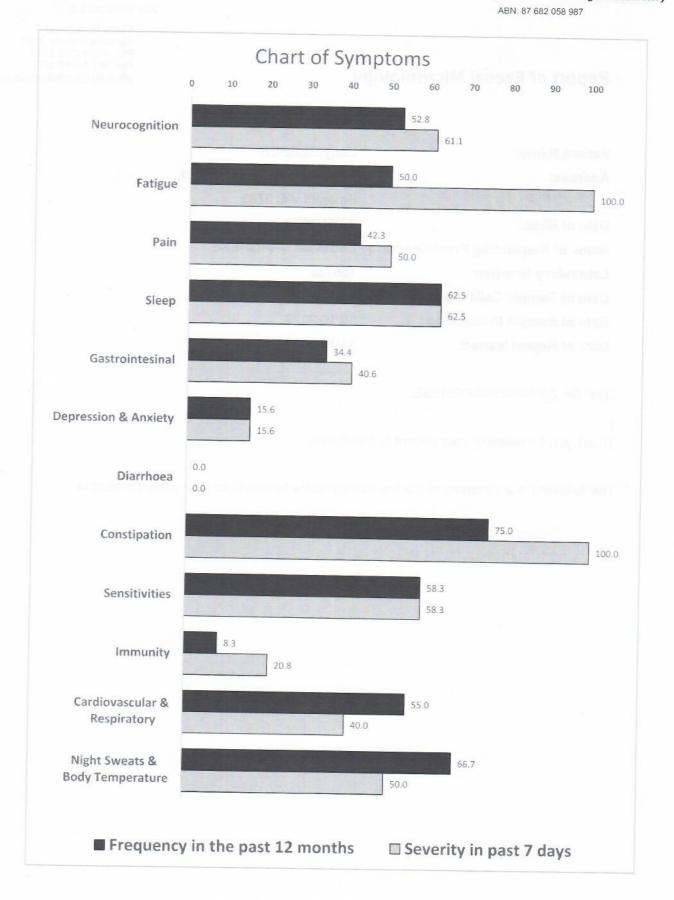
156189

Date of Sample Collection:

16/10/2022

Date of Sample Processing

19/10/2022


Date of Report Issued:

31/10/2022

Dear Dr Zachariah VARGHESE,

Thank you for referring your patient to Bioscreen.

The following is a summary of our faecal microbiota testing from your patient's sample.

Detailed Report, Faecal Microbiology

Bacterial Count (Total)
Facultative Anaerobe
[Aerobe] Counts
Anaerobe Count

Count cfu/g	Counts Reference Range cfu/g	Comment	Distribution % Total Count	Distribution Reference Range
1.3 x 10 ¹⁰	1.0 x 10 ⁹ - 1.0 x 10 ¹²	Within Ref Range		
3.4 x 10 ⁴	1.0 x 10 ⁷ - 1.0 x 10 ⁸	Low		
1.3 x 10 ¹⁰	1.0 x 10 ⁸ - 1.0 x 10 ¹²	Within Ref Range		

Aerobe: Anaerobe Ratio:

0.0 (Reference Range is 0.5 - 4.0)

Facultative Anaerobe [Aerobe] Counts

Aerobe Count (total) Escherichia coli coliform (Total)

Escherichia coli

Streptococcus (Total)

Streptococcus anginosus
Streptococcus mitis

Count cfu/g	Counts Reference Range cfu/g	Comment	Distribution % Total Count	Distribution Reference Range
3.4 x 10 ⁴	1.0 x 10 ⁷ - 1.0 x 10 ⁸	Low		
<1,0 x 10 ⁴	7.0 x 10 ⁶ - 9.0 x 10 ⁷	Low		
<1.0 x 10 ⁴		to man to find	< 0.01%	70-90%
3.4 × 10 ⁴	<3.0 x 10 ⁵	Within Ref Range	100%	<5%
2.2 x 10 ⁴			66.7%	
1.1 x 10 ⁴			33.3%	

Count cfu/g	Counts Reference Range cfu/g	Comment	Distribution % Total Count	Distribution Reference Range
<1.0 x 10 ¹	<1.0 x 10 ⁴	Within Ref Range		

Faecal Fungi (Total)

Specialist Microbiological Laboratory ABN: 87 682 058 987

Anaerobe	Counts
----------	--------

Anaerobe Count (total)

Bacteroides and related genera (Total)

 Bacteroides uniformis Bacteroides thetaiotaomicron

Eubacterium and related genera (Total)

Bacteroides nordii

Lactobacillus and related genera (Total)

Bifidobacterium and related genera (Total)

Clostridium and related genera (Total)

> Clostridium innocuum Blautia coccoides

	ABN. 07 662 056 987			
Count cfu/g	Counts Reference Range cfu/g	Comment	Distribution % Total Count	Distribution Reference Range
1.3 x 10 ¹⁰	1.0 x 10 ⁸ - 1.0 x 10 ¹²	Within Ref Range		
1.2 x 10 ¹⁰	5.0 x 10 ⁸ - 9.5 x 10 ¹¹	Within Ref Range Limited Species Detected	91.3%	85-95%
1.1 x 10 ¹⁰		edalpar	86.8%	
5.6 x 10 ⁸			4.3%	
3.4 x 10 ⁷			0.3%	
<9.0 x 10 ⁷	1.0 x 10 ⁸ - 1.0 x 10 ⁹	Low	< 0.01%	<15%
<5.0 x 10 ⁵	5.0 x 10 ⁵ - 1.0 x 10 ⁷	Low	< 0.01%	0.5-2%
<5.0 x 10 ⁵	5.0 x 10 ⁵ - 5.0 x 10 ⁸	Low	< 0.01%	5-11%
1.1 x 10 ⁹	<5.0 x 10 ⁸	High	8.7%	1-10%
1.1 x 10 ⁹			8.5%	
2.2 x 10 ⁷			0.2%	

Examples of Scientific Notation of Powers of Ten

 $10^2 = 10 \times 10 = 100$ $10^3 = 10 \times 10 \times 10 = 1,000$

 $3.5 \times 10^2 = 3.5 \times 10 \times 10 = 3500$

Summary Report, Faecal Microbiology

Total Aerobe Count: 3.4 x 10⁴ cfu/g (colony forming units/g)

Total Anaerobe Count: 1.3 x 1010 cfu/g

Aerobe: Anaerobe Ratio is: 0. The Reference Range is 0.5 to 4.

Comment: This ratio is below the reference range.

Aerobe: Anaerobe Ratio - Low

 A low aerobe:anaerobe ratio is usually due to a low count of Echerichia coli. Growth of aerobes is promoted by a diet that is high in fructooligosaccharides. Galactose may be given as a prebiotic.
 Oral E coli probiotics may also be given to increase the count of E. Coli in the gut.

Faecal Aerobes

Streptococcus sp.: Overgrowth (% Distribution)

E.Coli: Undetected

Total Aerobic Flora: Undergrowth

Comments

E. coli

- The reason for the low E.coli percentage distribution/ total count in the sample is unclear. However, recent exposure to antipyretics and/or analgesia (eg. paracetamol) may cause a marked change in the faecal ecology resulting in a significant alteration of the E.coli viable count (Bioscreen data, 2001). Recent supplementation with fructo-oligosaccharide (FOS) may also have suppressed growth of this organism.
- Undetectable levels of E.coli. Oral application of E.coli probiotics may be beneficial. Changing and normalizing the colonic aerobic microbial flora with the E. coli probiotic has shown to be safe and beneficial in patients with Ulcerative Colitis^{1,2} and Crohn's Disease³. The probiotic, once ingested and if adhere to the mucosal wall, will colonize the colon within a few days, and will remain colonized after oral administration ceased. Oral application of the E.coli probiotic has shown to stimulate and enhance immune responses and induces nonspecific natural immunity⁴.
- E.coli is an important intestinal micro-organism responsible for the synthesis of essential amino acids (eg. trytophan, phenylalanine, tyrosine)^{5,6,7} vitamins (folic acid, vit K2)^{8,9}, and coenzymes (CoQ10)¹⁰ important for cellular metabolism and reproduction. Determination into the levels of these essential amino acids in patients with persistent and chronic low levels of E.coli may be beneficial. Acute depletion of tyrosine and phenylalanine has shown to have selective effect on decision-making in depressive patients¹¹. Tyrosine depletion has also shown to have recognition and working memory impairment¹².
- Consider supplementing oral sugars (eg galactose, fucose) to increase the densities of current intestinal coliforms (eg E.coli)^{13,14} as opposed to adding a different strain with probiotics. Health professionals can contact Bioscreen for further information.
- Consider checking the folate, vitamin K2, CoQ10 levels and supplement if indicated.
- Consider checking the levels of the following essential amino acids: tryptophan, tyrosine, phenylalanine, and supplement if indicated.

Streptococcus/Enterococcus

 Streptococcus spp. are Gram positive, facultative anaerobic organisms and are classified as homofermenative, producing only lactic acid from glucose catabolism and generally regarded as potent D- and L-lactic acid producers (Bioscreen data).

Increased distribution of lactic acid bacteria (Streptococcus, Enterococcus sp.) may lower the colonic pH¹⁵ and has been reported to :(1) modify faecal microbial metabolism particularly the Bacteroides and Bifidobacterium spp, resulting in a decreased production of volatile fatty acids¹⁶, and (2) alter intestinal epithelial barrier function increasing passive intestinal permeability to small and large molecules. However, this consideration requires further study.

High colonization of faecal lactic acid bacteria (Streptococcus, Enterococcus sp.) significantly and positively correlate with cognitive dysfunctions (nervousness, memory loss, forgetfulness,

confusion, mind going blank)^{17,18,19,20}, and sleep patterns (Bioscreen data).

Increased proportion of lactic acid may result in a change in the distribution of the anaerobic microbial flora. This change of the fecal flora may affect the production of primary bile acids and influencing the bile acid composition in both the bile and the intestine21. The possibility of fat malabsorption may occur. However, this consideration requires further study.

If indicated, erythromycin may assist in the suppression of the faecal Streptococcus spp. Ampicillin/amoxycillin may be a suitable alternative if patient is reported to have adverse reactions

to the macrolids.

Faecal Anaerobes

Clostridium sp.: Overgrowth

Bacteroides sp.: Limited Bacteroides spp. detected

Bifidobacterium sp.: Undergrowth Lactobacillus sp.: Undergrowth Eubacterium sp.: Undergrowth

Comments

Bacteroides sp.

- Limited and low distribution of Bacteroides spp may affect the availability of volatile fatty acids for cellular metabolism.
- Consider the supplement of menaquinones (vitamin K2), and protoporphyrin IX (hemin) to improve the growth of anaerobes. High concentration of vitamin K2 (up to 300µg/kg) is found in natural yogurt, cheese, and butter22.
- Consider the supplement of biotin, bicarbonate, sodium and/or potassium to assist the production of volatile fatty acids by anaerobes.
- A general diet consisting of meat/bone broth, fish protein or soybean protein may assist the growth of these organisms
- This change of the fecal flora may affect the production of primary bile acids and influencing the bile acid composition in both the bile and the intestine21.

Bifidobacterium/Lactobacillus sp.

- Members of the genera Lactobacillus and Bifidobacterium are Gram positive bacilli and lactic acid producing bacteria. A few members of both genera can grow in a microaerophilic environment; but most are obligate anaerobes.
- Low levels of Lactobacillus and Bifidobacterium spp. detected. Oral Supplementation of the two probiotics may be beneficial.

Eubacterium sp.

- Eubacterium sp is member of the intestinal microbial flora of human, and is regarded as one of the most frequently recovered organisms in the gastrointestinal tract, second only to the Bacteroides spp.
- The organism is responsible for the deconjugation of bile acids and the production of butyric acids.
- The organism requires the amino acids arginine and citrulline for growth.

Clostridium sp.

- High levels of Clostridium spp. in the anaerobic microbial flora. Increased level of Clostridium spp may stimulate amine production. Levels of Clostridium spp. is positively correlated with the incidence of constipation (Bioscreen data).
- Oral supplementation of an antimicrobial agent (eg. phenoxymethyl penicillin) in a slow release capsule may assist in the suppression of the organism.

Faecal Fungi

Undetectable levels of faecal fungi in the sample.

If you require further assistance please contact Bioscreen and arrange a consultation. Report authorised 4th November, 2022 by Dr Henry Butt. Bioscreen Pty Ltd.

References

- Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet. 1999 Aug 21;354(9179):635-9.
- Kruis W, Schütz E, Fric P, Fixa B, Judmaier G, Stolte M. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 1997 Oct;11(5):853-8.
- Malchow HA. Crohn's disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn's disease? J Clin Gastroenterol. 1997 Dec;25(4):653-8.
- Cukrowska B, LodInová-ZádnIková R, Enders C, Sonnenborn U, Schulze J, Tlaskalová-Hogenová H. Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E. coli strain Nissle 1917. Scand J Immunol. 2002 Feb;55(2):204-9.
- 5. Dosselaere F, Vanderleyden J. A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 2001;27.
- Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 2002;80.
- 7. Polen T, Kramer M, Bongaerts J, Wubbolts M, Wendisch VF. The global gene expression response of Escherichia coli to L-phenylalanine. J Biotechnol 2005;115.
- Roux B, Walsh CT. p-Aminobenzoate synthesis in Escherichia coli: mutational analysis of three conserved amino acid residues of the amidotransferase PabA. Biochemistry 1993;32:3763-68.
- Burg AW, Brown GM. The biosynthesis of folic acid. 8. Purification and properties of the enzyme that catalyzes the production of formate from carbon atom 8 of guanosine triphosphate. J Biol Chem 1968;243.
- 10. Nichols BP, Green JM. Cloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase. J Bacteriol. 1992;174:5309-16.

- Roiser JP, McLean A, Ogilvie AD, Blackwell AD, Bamber DJ, Goodyer I et al. The subjective and cognitive effects of acute phenylalanine and tyrosine depletion in patients recovered from depression. Neuropsychopharmacology 2005;30:775-85.
- Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ. Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology (Berl) 2001;154:105-11.
- 13. Oli MW, Petschow BW, Buddington RK. Evaluation of fructooligosaccharide supplementation of oral electrolyte solutions for treatment of diarrhea: recovery of the intestinal bacteria. Digestive Diseases & Sciences. 1998;43(1):138-47.
- Allen A, Cunliffe WJ, Pearson JP, et.al. Studies on gastrointestinal mucous. Scand J Gastroenterol 1984; s93:101-13.
- van der Wiel-Korstanje JA, Winkler KC. The faecal flora in ulcerative colitis. J-Med-Microbiol. 1975;8:491-501.
- Edwards CA.Duerden BI.Read NW. The effects of pH on colonic bacteria grown in continuous culture. Journal of Medical Microbiology.19(2):169-80, 1985.
- Caldarini MI, Pons S, D'Agostino D et al. Abnormal fecal flora in a patient with short bowel syndrome. An in vitro study on effect of pH on D-lactic acid production. Dig Dis Sci. 1996;41:1649-1652
- Hove H, Mortensen PB. Colonic lactate metabolism and D-lactic acidosis. Dig Dis Sci 1995;40.
- Shah M, Beuerlein M, Danayan K. An approach to the patient with a life-threatening acidbase disturbance: the acidemias. . University of Toronto Medical Journal 2001;78:122-28.
- Uribarri J, Oh MS, Carroll HJ. D-lactic acidosis. A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine (Baltimore) 30 1998;77:73-82.
- Salvioli G, Salati R, Bondi M, et al. Bile acid transformation by the intestinal flora and cholesterol saturation in bile. Effects of Streptococcus faecium administration. Digestion. 1982:23:80-88.
- 22. Hirauchi K, Sakano T, Notsumoto S, Nagaoka T, Morimoto A. Measurement of K vitamins in food by high-performance liquid chromatography with fluorometric detection. Vitamins 1989;63:147-51.