

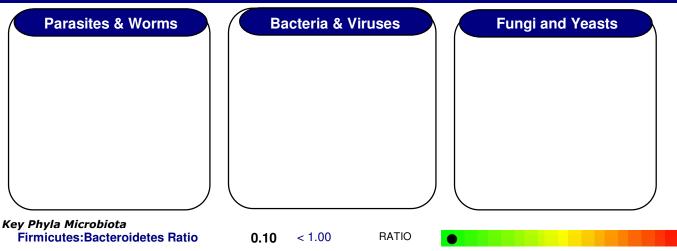
-. KAITLYN TOMLINSON **OMNE WELLNESS** 1/34 MURWILLUMBAH STREET **MURWILLUMBAH NSW 2484**

KELLY DAVIDSON 03-Jul-1979 **Female**

1/17 MACHINERY DRIVE **TWEED HEADS SOUTH NSW 2486**

LAB ID: 3903467 UR NO.: 6202007 Collection Date: 04-Jul-2023 Received Date: 06-Jul-2023

COMPLETE MICROBIOME MAPPING


General Macroscopic Description						
	Result	Markers				
Stool Colour	Brown	Colour - Brown is the colour of normal stool. Other colours may indicate abnormal gut health.				
Stool Form	Semi-formed	Form -Sample form is categorised using the Bristol stool chart. A comment on stool appearance can be found in the comments section.				
Mucous	Not Detected	Mucous - Mucous production may indicate the presence of an infection and/or inflammation.				
Occult Blood	POSITIVE	Blood (Macro)- The presence of blood in the stool may be the result				

of several causes besides colorectal bleeding, including hemorrhoids or gastrointestinal infection.

Short Chain Fatty Acids	Result	Range	Units	
Short Chain Fatty Acids, Beneficial	53.8	> 13.6	umol/g	
Butyrate	16.1	10.8 - 33.5	%	•
Acetate	56.1	44.5 - 72.4	%	
Propionate	25.6	0.0 - 32.0	%	•
Valerate	2.2	0.5 - 7.0	%	•
GIT Functional Markers	Result	Range	Units	

GIT FUNCTIONAL MARKETS	Result	Kange	Units	
Calprotectin.	33.0	0.0 - 50.0	ug/g	•
Pancreatic Elastase	>500.0	> 200.0	ug/g	
Secretory (slgA)	723.6	510.0 - 2010.	.0 ug/g	•
Zonulin	71.9	0.0 - 107.0	ng/g	•
Beta glucuronidase	2917.4	337.0 - 4433.	. <mark>0</mark> U/g	•
Steatocrit	<1.0	0.0 - 15.0	%	
a-Transglutaminase IgA	<20	0.0 - 100.0	units/L	

Microbiome Mapping Summary

Relative Commensal Abundance of the 6 Phyla groups can be found on page 4 of this report

-.KAITLYN TOMLINSON OMNE WELLNESS 1/34 MURWILLUMBAH STREET MURWILLUMBAH NSW 2484

KELLY DAVIDSON 03-Jul-1979 Female

1/17 MACHINERY DRIVE TWEED HEADS SOUTH NSW 2486

LAB ID : 3903467 UR NO. : 6202007 Collection Date : 04-Jul-2023 Received Date: 06-Jul-2023

3903467

Parasites and Worms.	Result	Range	Units		
Parasitic Organisms					
Cryptosporidium species	<dl< td=""><td>< 1.0</td><td>x10^6 org/g</td><td></td><td></td></dl<>	< 1.0	x10^6 org/g		
Entamoeba histolytica.	<dl< td=""><td>< 1.0</td><td>x10^4 org/g</td><td></td><td></td></dl<>	< 1.0	x10^4 org/g		
Giardia intestinalis	<dl< td=""><td>< 1.0</td><td>x10^3 org/g</td><td></td><td></td></dl<>	< 1.0	x10^3 org/g		
Blastocystis hominis.	<dl< td=""><td>< 1.0</td><td>x10^3 org/g</td><td></td><td></td></dl<>	< 1.0	x10^3 org/g		
Dientamoeba fragilis.	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Endolimax nana	<dl< td=""><td>< 1.0</td><td>x10^4 org/g</td><td></td><td></td></dl<>	< 1.0	x10^4 org/g		
Entamoeba coli.	<dl< td=""><td>< 5.0</td><td>x10^6 org/g</td><td></td><td></td></dl<>	< 5.0	x10^6 org/g		
Pentatrichomonas hominis	<dl< td=""><td>< 1.0</td><td>x10^2 org/g</td><td></td><td></td></dl<>	< 1.0	x10^2 org/g		
Worms					
Ascaris lumbricoides, Roundworm	Not Detec	cted	Necator amo	ericanus, Hookworm	Not Detected
Trichuris trichiura, Whipworm	Not Detected		Enterobius	vermicularis,Pinworm	Not Detected
Enterocytozoon spp	Not Detected		Hymenolepi	s spp, Tapeworm	Not Detected
Strongyloides spp, Roundworm	Not Detected			eies, Tapeworm	Not Detected

Comment: Not Detected results indicate the absence of detectable DNA in the sample for the worms reported. NOTE: Reflex testing is performed on clinically indicated samples

portunistic Bacteria/Overgrow	th Result	Range	Units
Bacillus species.	<dl< th=""><th>< 1.00</th><th>x10^5 CFU/g</th></dl<>	< 1.00	x10^5 CFU/g
Enterococcus faecalis	<dl< th=""><td>< 1.00</td><td>x10^4 CFU/g</td></dl<>	< 1.00	x10^4 CFU/g
Enterococcus faecium	<dl< th=""><td>< 1.00</td><td>x10^4 CFU/g</td></dl<>	< 1.00	x10^4 CFU/g
Morganella species	<dl< th=""><td>< 1.00</td><td>x10^3 CFU/g</td></dl<>	< 1.00	x10^3 CFU/g
Pseudomonas species	<dl< th=""><td>< 1.00</td><td>x10^4 CFU/g</td></dl<>	< 1.00	x10^4 CFU/g
Pseudomonas aeruginosa.	<dl< th=""><td>< 3.00</td><td>x10^2 CFU/g</td></dl<>	< 3.00	x10^2 CFU/g
Staphylococcus species	<dl< th=""><td>< 1.00</td><td>x10^4 CFU/g</td></dl<>	< 1.00	x10^4 CFU/g
Staphylococcus aureus	<dl< th=""><td>< 5.00</td><td>x10^2 CFU/g</td></dl<>	< 5.00	x10^2 CFU/g
Streptococcus species	2.50	< 3.00	x10^3 CFU/g
Methanobrevibacter smithii	<dl< th=""><th>< 3.50</th><th>x10^9 CFU/g</th></dl<>	< 3.50	x10^9 CFU/g
Desulfovibrio piger	<dl< th=""><td>< 18.00</td><td>x10^7 CFU/g</td></dl<>	< 18.00	x10^7 CFU/g
Enterobacter complex.	<dl< th=""><td>< 5.00</td><td>x10^6 CFU/g</td></dl<>	< 5.00	x10^6 CFU/g
otential Autoimmune Triggers			
Citrobacter species.	<dl< th=""><th>< 5.00</th><th>x10^5 CFU/g</th></dl<>	< 5.00	x10^5 CFU/g
Citrobacter freundii.	<dl< th=""><th>< 5.00</th><th>x10^5 CFU/g</th></dl<>	< 5.00	x10^5 CFU/g
Klebsiella species	<dl< th=""><th>< 5.00</th><th>x10^3 CFU/g</th></dl<>	< 5.00	x10^3 CFU/g
Klebsiella pneumoniae.	<dl< th=""><th>< 5.00</th><th>x10^4 CFU/g</th></dl<>	< 5.00	x10^4 CFU/g
Prevotella copri	<dl< th=""><th>< 1.00</th><th>x10^7 CFU/g</th></dl<>	< 1.00	x10^7 CFU/g
Proteus species	<dl< th=""><th>< 5.00</th><th>x10^4 CFU/g</th></dl<>	< 5.00	x10^4 CFU/g
Proteus mirabilis.	<dl< th=""><td>< 1.00</td><td>x10^3 CFU/g</td></dl<>	< 1.00	x10^3 CFU/g
Fusobacterium species	0.20	< 10.00	x10^7 CFU/g
ngi & Yeast	Result	Range	Units
Candida species.	<dl< th=""><th>< 5.00</th><th>x10^3 CFU/g</th></dl<>	< 5.00	x10^3 CFU/g
Candida albicans.	<dl< th=""><th>< 5.00</th><th>x10^2 CFU/g</th></dl<>	< 5.00	x10^2 CFU/g
Geotrichum species.	<dl< th=""><th>< 3.00</th><th>x10^2 CFU/g</th></dl<>	< 3.00	x10^2 CFU/g
Saccharomyces cerevisiae.	<dl< th=""><th>< 3.00</th><th>x10^3 CFU/g</th></dl<>	< 3.00	x10^3 CFU/g
Rhodotorula species.	<dl< th=""><td>< 1.00</td><td>x10^3 CFU/g</td></dl<>	< 1.00	x10^3 CFU/g

-.KAITLYN TOMLINSON OMNE WELLNESS 1/34 MURWILLUMBAH STREET MURWILLUMBAH NSW 2484

KELLY DAVIDSON 03-Jul-1979 Female

1/17 MACHINERY DRIVE TWEED HEADS SOUTH NSW 2486

LAB ID : 3903467 UR NO. : 6202007 Collection Date : 04-Jul-2023 Received Date: 06-Jul-2023

3903467

Bacterial Pathogens	Result	Range	Units
Aeromonas hydrophila.	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
Campylobacter species.	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
C. difficile, Toxin A	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
C. difficile, Toxin B	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
Enterohemorrhagic E. coli	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
Enteroinvasive E. coli/Shigella	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
Enterotoxigenic E. coli LT/ST	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
Shiga-like Toxin E. coli stx1	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
Shiga-like Toxin E. coli stx2	<dl< th=""><th>< 1.00</th><th>x10^3 CFU/g</th></dl<>	< 1.00	x10^3 CFU/g
Salmonella species.	<dl< th=""><th>< 1.00</th><th>x10^4 CFU/g</th></dl<>	< 1.00	x10^4 CFU/g
Vibrio species.	<dl< th=""><th>< 1.00</th><th>x10^5 CFU/g</th></dl<>	< 1.00	x10^5 CFU/g
Yersinia species.	<dl< th=""><th>< 1.00</th><th>x10^5 CFU/g</th></dl<>	< 1.00	x10^5 CFU/g
Helicobacter pylori	<dl< th=""><th>< 1.0</th><th>x10^3 CFU/g</th></dl<>	< 1.0	x10^3 CFU/g

Comment: Helico Pylori virulence factors will be listed below if detected POSITIVE

H.pylori Virulence Factor, babA	Not Detected	H.pylori Virulence Factor, cagA	Not Detected
H.pylori Virulence Factor, dupA	Not Detected	H.pylori Virulence Factor, iceA	Not Detected
H.pylori Virulence Factor, oipA	Not Detected	H.pylori Virulence Factor, vacA	Not Detected
H.pylori Virulence Factor, virB	Not Detected	H.pylori Virulence Factor, virD	Not Detected

lange

Units

virai Patnogens	Result R
Adenovirus 40/41	Not Detected
Norovirus GI/II	Not Detected
Rotavirus A	Not Detected
Sapovirus (I,II,IV,V)	Not Detected
Astrovirus (hAstro)	Not Detected

Normal Bacterial GUT Flora	Result	Range	Units	
Bacteroides fragilis	139.5	1.6 - 250.0	x10^9 CFU/g	
Bifidobacterium species	<i>3.0</i> *L	> 6.7	x10^7 CFU/g	
Bifidobacterium longum	2.2 *L	> 5.2	x10^6 CFU/g	
Enterococcus species	34.7	1.9 - 2000.0	x10^5 CFU/g	•
Escherichia species	1289.0	3.7 - 3800.0	x10^6 CFU/g	
Lactobacillus species	2.0 *L	8.6 - 6200.0	x10^5 CFU/g	
Lactobacillus Rhamnosus	1.1 *L	8.3 - 885.0	x10^4 CFU/g	•
Clostridium species	10.2	5.0 - 50.0	x10^6 CFU/g	•
Oxalobacter formigenes	20.00	> 15.00	x10^7 CFU/g	
Akkermansia muciniphila	3.20	1.00 - 50.00	x10^3 CFU/g	•
Faecalibacterium prausnitzii	160.1 *L	200.0 - 3500.	0 x10^3 CFU/g	•

Methodology:

GIT Functional markers performed by GCMS,EIA,FEIA.

Bacteriology, Virology, Fungi, Parasites & Worms performed by PCR, gPCR.

<dl = result below detectable limit. *H = Result greater than the reference range. *L = Result less than the reference range

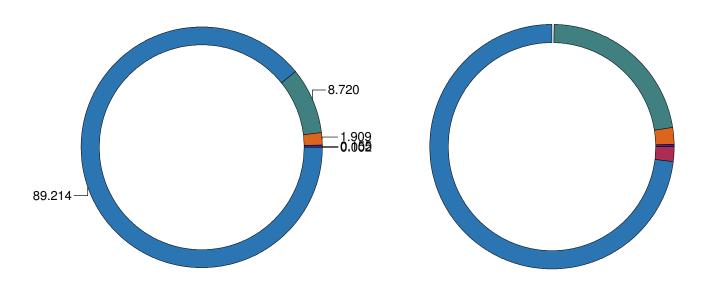
-.KAITLYN TOMLINSON OMNE WELLNESS 1/34 MURWILLUMBAH STREET MURWILLUMBAH NSW 2484

KELLY DAVIDSON 03-Jul-1979 Female

1/17 MACHINERY DRIVE TWEED HEADS SOUTH NSW 2486

LAB ID : 3903467 UR NO. : 6202007 Collection Date : 04-Jul-2023 Received Date: 06-Jul-2023

3903467


Introduction:

Your gut microbiome is a collective name for the 40 trillion cells and up to 1000 microbial species that include bacteria, viruses, fungi, parasites, and archaea and reside in our gut. The number of gut bacterial cells is approximately equal to the total number of human cells in our body, so if we consider only cell counts, we are only about half human. In terms of gene counts, the microbiome contains about 200 times more genes than the human genome, making bacterial genes responsible for over 99% of our body's gene content! Of all the microbial communities in the human body, the gut microbiome is by far the most dense, diverse, and physiologically important ecosystem to our overall health.

Re	lative Commensal Abunda	nce Result	Range	Units	
	Bacteroidetes Phylum	89.214	50.000 - 95.000	%	
	Firmicutes Phylum	8.720	3.500 - 40.000	%	
	Proteobacteria Phylum	1.909	0.500 - 12.500	%	
	Verrucomicrobia Phylum	0.155	0.000 - 2.400	%	
	Actinobacteria Phylum	0.002	0.001 - 4.818	%	
	Euryarchaeota Phylum	0.000	0.000 - 0.017	%	

Your Phyla:

Healthy Phyla:

References

NOTE: Relative abundance reference ranges have been based on a healthy population study.

King CH, et., al. (2019) Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One. 2019 Sep 11;14(9):e0206484.

-.KAITLYN TOMLINSON OMNE WELLNESS 1/34 MURWILLUMBAH STREET MURWILLUMBAH NSW 2484

KELLY DAVIDSON 03-Jul-1979 Female

1/17 MACHINERY DRIVE TWEED HEADS SOUTH NSW 2486

LAB ID : 3903467 UR NO. : 6202007 Collection Date : 04-Jul-2023 Received Date: 06-Jul-2023

3903467

Pathogen Summary:

Macroscopy Comment

BROWN coloured stool is considered normal in appearance.

FAECAL OCCULT BLOOD POSITIVE:

Faecal occult blood has been detected in this specimen. The presence of blood in the stool may be the result of several causes besides colorectal bleeding, including hemorrhoids or gastrointestinal infection. Results should be considered with other clinical information available to the physician.

Please note: A positive result indicates that the sample likely contains a human haemoglobin concentration >20ng/ml (Limit of detection).

Review this result with other inflammation markers such as calprotectin.

Metabolism Comment

In a healthy gut Short Chain Fatty Acids (SCFAs) exhibited in the following proportions; Butyrate, Acetate, Propionate (16%:60%:24%).

The primary SCFAs butyrate, propionate and acetate are produced by predominant commensal bacteria via fermentation of soluble dietary fibre and intestinal mucus glycans.

Key producers of SCFAs include Faecalibacterium prausnitzii, Akkermansia mucinphila, Bacteroides fragilis, Bifidobacterium, Clostridium and Lactobacillus Spp.

The SCFAs provide energy for intestinal cells and regulate the actions of specialised mucosal cells that produce anti-inflammatory and antimicrobial factors, mucins that constitute the mucus barriers, and gut active peptides that facilitate appetite regulation and euglycemia. Abnormal SCFAs may be associated with dysbiosis, intestinal barrier dysfunction and inflammatory conditions.

SCFA PRODUCTION TABLE

BACTERIA	BUTYRATE	PROPRIONATE	ACETATE
Akkermansia muciniphila		**	A A
Anaerostipes caccae	**		
Bacteroides spp.		**	
Bifidobacterium spp.		A	**
Blautia obeum		A A	**
Coprococcus eutactus	A		
Escherichia coli			A
Eubacterium rectale	A A		
Faecalibacterium prausnitzii	**		
Lactobacillus spp.	A	A	A
Roseburia homini	A A		
Ruminococcus bromii	A		A
Subdoligranulum variabile	A		

-.KAITLYN TOMLINSON OMNE WELLNESS 1/34 MURWILLUMBAH STREET MURWILLUMBAH NSW 2484

KELLY DAVIDSON 03-Jul-1979 Female

1/17 MACHINERY DRIVE TWEED HEADS SOUTH NSW 2486

LAB ID : 3903467 UR NO. : 6202007 Collection Date : 04-Jul-2023 Received Date: 06-Jul-2023

3903467

GIT Markers Comment

PANCREATIC ELASTASE: Normal exocrine pancreatic function.

Pancreatic Elastase reflects trypsin, chymotrypsin, amylase and lipase activity.

This test is not affected by supplements of pancreatic enzymes.

Healthy individuals should be producing >500 ug/g of PE-1 under normal/healthy conditions.

PE-1 levels between 200 - 500 ug/g may indicate suboptimal production.

PE-1 levels <200 ug/g indicate clear inadequate production.

The clinician should therefore consider digestive enzyme supplementation if one or more of the following conditions is present: Loose watery stools, Undigested food in the stools, Post-prandial abdominal pain, Nausea or colicky abdominal pain, Gastroesophageal reflux symptoms, Bloating or food intolerance.

CALPROTECTIN Normal:

Faecal calprotectin values <50 ug/g are not indicative of inflammation in the gastrointestinal tract. Subjects with low faecal calprotectin levels normally do not need to be further investigated by invasive procedures. In patients with strong clinical indications of intestinal inflammation, repeat testing may be useful.

Test performed by Phadia EliA Fluorescence enzyme immunoassay (FEIA).

SECRETORY IGA NORMAL:

Secretory IgA is within range.

Secretory IgA represents the first line of defence of the gastrointestinal mucosa and is central to the normal function of the gastrointestinal tract as an immune barrier. Review this level with other pathogenic bacteria and normal commensal flora. Lower levels within reference range should be interpreted clinically.

ZONULIN HIGH NORMAL:

Zonulin is a protein that modulates intestinal barrier function and can also be considered as a potential inflammatory marker. Although this result is within range, the result should be interpreted with patient clinical symptoms as well as reviewing the presence of other proteobacteria that may be the result of increased Zonulin.

beta-GLUCORONIDASE NORMAL:

B-Glucuronidase is considered normal and is within reference range.

Opportunistic Bacteria Comment

METHANOBREVIBACTER SMITHII:

PHYLUM: Euryarchaeota

DESCRIPTION:

Methanobrevibacter smithii is a methane-producing microbe that plays an important role in the gut ecosystem by facilitating carbohydrate fermentation and production of short-chain fatty acids by commensal bacteria. Approximately 70% of the healthy cohort has below detectable levels of Methanobrevibacter smithii.

Page 6 of 9 Complete Microbiome Map Lab ID: 3903467 Patient Name: KELLY DAVIDSON Printed: 13/Jul/23 13:34

-.KAITLYN TOMLINSON OMNE WELLNESS 1/34 MURWILLUMBAH STREET MURWILLUMBAH NSW 2484

KELLY DAVIDSON 03-Jul-1979 Female

1/17 MACHINERY DRIVE
TWEED HEADS SOUTH NSW 2486

LAB ID : 3903467 UR NO. : 6202007 Collection Date : 04-Jul-2023 Received Date: 06-Jul-2023

3903467

Normal Bacterial Flora Comment

BIFIDOBACTERIUM SPECIES LOW:

PHYLUM: Actinobacteria

DESCRIPTION:

Bifidobacterium is a genus of gram-positive, nonmotile anaerobic bacteria that are ubiquitous inhabitants of the gastrointestinal tract and considered a probiotic. Bifidobacterium species prevent diarrhea and intestinal infections, alleviate constipation, and stimulate the immune system. Low levels may be associated with irritable bowel syndrome, asthma, autism, depressive disorder and with pathogenic bacterial infection.

TREATMENT SUGGESTIONS: Treatment may involve the use of Bifidobacterium containing probiotics and treatment of any intestinal infection.

BIFIDOBACTERIUM LONGUM LOW:

PHYLUM: Actinobacteria

DESCRIPTION:

Bifidobacterium longum is a Gram-positive, catalase-negative, rod-shaped bacterium present in the human gastrointestinal tract and one of the Bifidobacterium species. It can induce and regulate immune responses, reduce the expression of inflammatory cytokines, and maintain the normal intestinal barrier function.

Bifidobacterium longum is a clinically effective, well-established, multifunctional probiotic that has a long history of human use in alleviating gastrointestinal, immunological, and infectious diseases such as constipation, antibiotic associated diarrhoea, irritable bowel syndrome and ulcerative colitis. Low levels may be associated with irritable bowel syndrome, asthma, autism, depressive disorder and with pathogenic bacteria infection.

TREATMENT SUGGESTIONS: Treatment may involve the use of Bifidobacterium longum containing probiotics and treatment of any intestinal infections.

LACTOBACILLUS RHAMNOSUS LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Lactobacillus Rhamnosus is a Gram-positive anaerobic bacterium and is one of the most widely used probiotic strains, of which various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea and even preventing certain allergic symptoms.

Decreased Lactobacillus rhamnosus colonisation has been shown to decrease gastro-intestinal health, increasing the risk of gastro-intestinal infections and diarrhea as well as extra-intestinal infections including oral and respiratory health. Studies have also revealed that chronic psychological stress and alcohol use may be associated with a decrease in Lactobacillus species, as well as antibiotic / medication use.

TREATMENT SUGGESTIONS: Treatment may involve the use of Lactobacillus containing probiotics and treatment of any intestinal infections.

LACTOBACILLUS SPECIES LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Lactobacillus species low. Lactobacillus is a genus of Gram-positive rod-shaped, non-spore-forming bacteria which constitute a significantly important component of the human gastrointestinal system.

Lactobacillus exhibits a mutualistic relationship with the human body, as it protects the host against potential invasions by pathogens, and in turn, the host provides a source of nutrients. Lactobacilli are among the most common probiotic found in food such as yogurt, and it is diverse in its application to maintain gut health and to help treat ailments clinically such as diarrhea and obesity.

Lactobacillus species promote the anti-inflammatory response, thereby supporting the improvement of symptoms pertaining to asthma, chronic obstructive pulmonary disease, neuroinflammatory diseases, cardiovascular diseases, inflammatory bowel disease (IBD) and chronic infections in patients. Reduced levels increase the risk of infections and inflammation. Studies have also revealed that chronic psychological stress and alcohol use may be associated with a decrease in Lactobacillus species, as well as antibiotic /

-.KAITLYN TOMLINSON OMNE WELLNESS 1/34 MURWILLUMBAH STREET MURWILLUMBAH NSW 2484

KELLY DAVIDSON 03-Jul-1979 Female

1/17 MACHINERY DRIVE TWEED HEADS SOUTH NSW 2486

LAB ID : 3903467 UR NO. : 6202007 Collection Date : 04-Jul-2023 Received Date: 06-Jul-2023

3903467

medication use.

TREATMENT SUGGESTIONS: Treatment may involve the use of Lactobacillus containing probiotics and treatment of any intestinal infections.

FAECALIBACTERIUM PRAUSNITZII LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Faecalibacterium prausnitzii is gram-positive, rod-shaped, anaerobic and is one of the most abundant and important commensal bacteria of the human gut microbiota. It is a key producer of Short Chain Fatty acids, has anti-inflammatory properties and may improve the imbalance in intestinal bacteria that leads to dysbiosis. Decreased colonisation of F. prausnitzii in the intestines have been associated with Crohn's disease, obesity, asthma, and major depressive disorders.

TREATMENT SUGGESTIONS: Treatment may involve the use of probiotics, treatment of any intestinal infections and dietary modification.

-.KAITLYN TOMLINSON **OMNE WELLNESS** 1/34 MURWILLUMBAH STREET **MURWILLUMBAH NSW 2484**

KELLY DAVIDSON Female 03-Jul-1979

1/17 MACHINERY DRIVE **TWEED HEADS SOUTH NSW 2486**

LAB ID: 3903467 UR NO.: 6202007 Collection Date: 04-Jul-2023 Received Date: 06-Jul-2023

3903467

The Four "R" Treatment Protocol

	Using a course of antimic robial, antibacterial, antiviral or anti parasitic therapies in cases where organisms are present. It may	ANTIMICROBIAL	Oil of oregano, berberine, caprylic acid
		ANTIBAC TERIAL	Liquorice, zinc carnosine, mastic gum, tribulus, berberine, black walnut, caprylic acid, oil of oregano
REMOVE	also be necessary to remove offending foods, gluten, or	ANTIFUNGAL	Oil of oregano, caprylic acid, berberine, black walnut
	medication that may be acting as antagonists.	ANTIPARASTIC	Artemesia, black walnut, berberine, oil of oregano
	Consider testing IgG96 foods as a tool for removing offending foods.	ANTIVIRAL	Cat's claw, berberine, echinacea, vitamin C, vitamin D3, zinc, reishi mushrooms
		BIOFILM	Oil of oregano, protease
REPLACE	In cases of maldigestion or malabsorption, it may be necessary to restore proper digestion by supplementing with digestive enzymes.	DIGESTIVE SUPPORT	Betaine hydrochloride, tilactase, amylase, lipase, protease, apple cider vinegar, herbal bitters
ш	Recolonisation with healthy, beneficial bacteria.	PREBIOTICS	Sippery elm, pectin, larch arabinogalactans
REINOCULATE	Supplementation with probiotics, along with the use of prebiotics helps re-establish the proper microbial balance.	PROBIOTICS	Bifidobacterium animalis sup lactise, lactobacillus acidophilus, lactobacillus plantarum, lactobacillus casei, bifidobacterium breve, bifidobacterium bifidum, bifidobacterium longum, lactobacillus salivarius sep salivarius, lactobacillus paracasei, lactobacillus rhamnosus, Saccaromyces boulardii
REBALANCE	Restore the integrity of the gut mucosa by giving support to healthy mucosal cells, as well as immune support. Address whole	INTESTINAL MUCOSA IMMUNE SUPPORT	Saccaromyces boulardii, lauric acid
-త	body health and lifestyle factors so as to prevent future GI dysfunction.	INTESTINAL BARRIER REPAIR	L-Glutamine, a loe vera, liquorice, marshmallow root, okra, quercetin, slippery elm, zinc camosine, Saccaromyces boulardii, omega 3 essential fatty acids, B vitamins
REPAIR		SUPPORT CONSIDERATION	Seep, diet, exercise, and stress management