

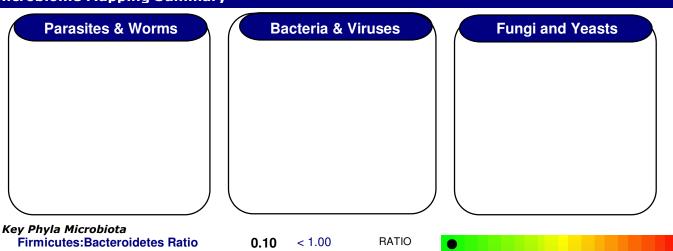
-.RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID : 4025042 UR NO. : 6297449 Collection Date : 03-Sep-2024 Received Date: 18-Sep-2024

4025042


COMPLETE MICROBIOME MAPPING

General Macro	scopic Description	
	Result	Markers
Stool Colour	Brown	Colour - Brown is the colour of normal stool. Other colours may indicate abnormal gut health.
Stool Form	Semi-formed	Form -Sample form is categorised using the Bristol stool chart. A comment on stool appearance can be found in the comments section.
Mucous	Not Detected	Mucous - Mucous production may indicate the presence of an infection and/or inflammation.
Occult Blood	Negative	Blood (Macro) - The presence of blood in the stool may be the result of several causes besides colorectal bleeding, including hemorrhoids or gastrointestinal infection.

Short Chain Fatty Acids	Result	Range	Units	
Methodology: GC/MS				
Short Chain Fatty Acids, Beneficial	61.5	> 13.6	umol/g	
Butyrate	21.3	10.8 - 33.5	%	•
Acetate	47.6	44.5 - 72.4	%	•
Propionate	28.4	0.0 - 32.0	%	
Valerate	2.7	0.5 - 7.0	%	

GIT Functional Markers	Result	Range	Units	
Methodology: FEIA, EIA, CLIA, pH electrode				
Calprotectin.	<5.0	0.0 - 50.0	ug/g	
Pancreatic Elastase	537.0	> 200.0	ug/g	
Secretory (slgA)	516.5	510.0 - 2040.	0 ng/mL	
Zonulin	25.3	0.0 - 107.0	ng/mL	•
Beta glucuronidase	4887.4	368.0 - 6266.	0 U/g	
Steatocrit	16.0 *H	0.0 - 10.0	%	
a-Transglutaminase IgA	<20	0.0 - 100.0	units/L	
рН	<i>6.2</i> *L	6.3 - 7.7		• 100

Microbiome Mapping Summary

Relative Commensal Abundance of the 6 Phyla groups can be found on page 5 of this report

-. RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE **AIRLIE BEACH QLD 4802**

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID: 4025042 UR NO.: 6297449 **Collection Date:** 03-Sep-2024 **Received Date:** 18-Sep-2024

Parasites and Worms.	Result	Range	Units		
Parasitic Organisms					
Cryptosporidium species	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Entamoeba histolytica.	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Giardia intestinalis	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Blastocystis hominis.	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Dientamoeba fragilis.	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Endolimax nana	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Entamoeba coli.	<dl< td=""><td>< 5.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 5.0	x10^5 org/g		
Pentatrichomonas hominis	<dl< td=""><td>< 1.0</td><td>x10^5 org/g</td><td></td><td></td></dl<>	< 1.0	x10^5 org/g		
Worms					
Ancylostoma duodenale, Roundworr	n Not Dete	ected			
Ascaris lumbricoides, Roundworm	Not Dete	ected	Necator an	nericanus, Hookworm	Not Detected
Trichuris trichiura, Whipworm	Not Dete	ected	Enterobius	Not Detected	

Enterocytozoon spp **Not Detected Not Detected** Hymenolepis spp, Tapeworm Strongyloides spp, Roundworm **Not Detected Not Detected** Taenia species, Tapeworm Comment: Not Detected results indicate the absence of detectable DNA in the sample for the worms reported.

NOTE: Reflex testing is performed on clinically indicated samples Opportunistic Bacteria/Overgrowth Result **Units** Range Bacillus species. <dl < 1.00 x10^4 CFU/g Enterococcus faecalis <dl < 1.00 x10^5 CFU/g < 1.00 x10^5 CFU/g Enterococcus faecium <dl < 1.00 x10^5 CFU/g Morganella species <dl Pseudomonas species <dl < 1.00 x10^4 CFU/g Pseudomonas aeruginosa. <dl < 3.00 x10^4 CFU/g x10^3 CFU/g Staphylococcus species <dl < 1.00 Staphylococcus aureus <dl < 5.00 x10^3 CFU/g x10^4 CFU/g < 3.00 Streptococcus agalactiae. <dl < 1.00 x10^6 CFU/g Streptococcus anginosus. <dl < 1.00 x10^4 CFU/g Streptococcus mutans. <dl < 1.00 x10^6 CFU/g Streptococcus oralis. 0.12 Streptococcus salivarius. 0.29 < 5.00 x10^6 CFU/g Methanobrevibacter smithii <dl < 1.00 x10^5 CFU/g x10^6 CFU/g < 18.00 Desulfovibrio piger <dl < 5.00 x10^5 CFU/g Enterobacter cloacae complex. <dl Potential Autoimmune Triggers < 5.00 x10^4 CFU/g Citrobacter species. <dl x10^4 CFU/g < 5.00 Citrobacter freundii. <dl Klebsiella species < 5.00 x10^3 CFU/g <dl < 5.00 x10^5 CFU/g Klebsiella pneumoniae. <dl <dl Prevotella copri < 1.00 x10^9 CFU/g **Proteus species** <dl < 5.00 x10^5 CFU/g Proteus mirabilis. x10^4 CFU/g <dl < 1.00 Fusobacterium species < 10.00 x10^4 CFU/g 0.32

-. RACHEAL LEE (NPINS) **THRIVE HEALTH** SHOP 6/115 SHINGLEY DRIVE **AIRLIE BEACH QLD 4802**

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID: 4025042 UR NO.: 6297449 Collection Date : 03-Sep-2024 **Received Date:** 18-Sep-2024

cology	Result Ra	ange Units
Candida dubliniensis.	<dl 1.<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Candida glabrata.	< dl < 1.0	.00 x10^5 CFU/g
Candida intermedia.	<dl 1.0<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Candida krusei.	<dl 1.0<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Candida lambica.	<dl 1.<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Candida lusitaniae.	<dl 1.0<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Candida parapsilosis.	<dl 1.<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Candida albicans.	<dl< b=""> < 1.0</dl<>	.00 x10^5 CFU/g
Candida famata.	<dl< b=""> < 1.0</dl<>	.00 x10^5 CFU/g
Candida keyfr.	<dl< b=""> < 1.</dl<>	.00 x10^5 CFU/g
Candida lipolytica.	<dl< b=""> < 1.0</dl<>	.00 x10^5 CFU/g
Geotrichum species.	<dl< b=""> < 1.0</dl<>	.00 x10^5 CFU/g
Rhodotorula species.	<dl< b=""> < 1.0</dl<>	.00 x10^5 CFU/g
Saccharomyces cerevisiae:	<dl 1.0<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
cterial Pathogens	Result Ra	ange Units
Aeromonas hydrophila.	<dl< b=""> < 1.</dl<>	.00 x10^3 CFU/g
Campylobacter species.	<dl 1.<="" <="" th=""><th>.00 x10^5 CFU/g</th></dl>	.00 x10^5 CFU/g
C. difficile, Toxin A	<dl 1.<="" <="" th=""><td>.00 x10^4 CFU/g</td></dl>	.00 x10^4 CFU/g
C. difficile, Toxin B	<dl< b=""> < 1.0</dl<>	.00 x10^4 CFU/g
Enterohemorrhagic E. coli	<dl< b=""> < 1.0</dl<>	.00 x10^5 CFU/g
Enteroinvasive E. coli/Shigella	<dl 1.0<="" <="" th=""><td>.00 x10^3 CFU/g</td></dl>	.00 x10^3 CFU/g
Enterotoxigenic E. coli LT/ST	<dl< b=""> < 1.</dl<>	.00 x10^5 CFU/g
Shiga-like Toxin E. coli stx1	<dl< b=""> < 1.</dl<>	.00 x10^4 CFU/g
Shiga-like Toxin E. coli stx2	<dl 1.0<="" <="" th=""><td>.00 x10^4 CFU/g</td></dl>	.00 x10^4 CFU/g
Salmonella species.	<dl 1.0<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Vibrio species.	<dl 1.0<="" <="" th=""><td>.00 x10^4 CFU/g</td></dl>	.00 x10^4 CFU/g
Yersinia species.	<dl 1.0<="" <="" th=""><td>.00 x10^5 CFU/g</td></dl>	.00 x10^5 CFU/g
Helicobacter pylori	<dl 1.<="" <="" th=""><td>.0 x10^3 CFU/g</td></dl>	.0 x10^3 CFU/g
omment: Helico Pylori virulen	ce factors will I	be listed below if detected POSITIVE
H.pylori Virulence Factor, babA	Not Detected	d H.pylori Virulence Factor, cagA Not Detected
H.pylori Virulence Factor, dupA	Not Detected	
H.pylori Virulence Factor, oipA	Not Detected	
H.pylori Virulence Factor, virB	Not Detected	• •
al Pathogens	Result Ra	ange Units
Adenovirus 40/41	Not Detected	
		-

Norovirus GI/II

Sapovirus (I,II,IV,V)

Astrovirus (hAstro)

Rotavirus A

Not Detected

Not Detected

Not Detected

Not Detected

-.RACHEAL LEE (NPINS) THRIVE HEALTH **SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802**

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID: 4025042 UR NO.: 6297449 Collection Date: 03-Sep-2024 Received Date: 18-Sep-2024

4025042

Normal Bacterial GUT Flora	Result Range	Units
Bacteroides fragilis	228.2 1.6 - 250.0	x10^5 CFU/g
Bifidobacterium adolescentis	6.6 4.6 - 1000.0	x10^5 CFU/g
Bifidobacterium bifidum.	<dl*l -="" 1000.0<="" 4.6="" th=""><th>x10^6 CFU/g ●</th></dl*l>	x10^6 CFU/g ●
Bifidobacterium breve.	<dl*l -="" 1000.0<="" 4.6="" th=""><th>x10^3 CFU/g ●</th></dl*l>	x10^3 CFU/g ●
Bifidobacterium longum	123.1 4.6 - 1000.0	x10^4 CFU/g
Enterococcus species	<dl*l -="" 1.9="" 2000.0<="" th=""><th>x10^3 CFU/g ●</th></dl*l>	x10^3 CFU/g ●
Escherichia species	592.8 3.7 - 3800.0	x10^4 CFU/g
Lactobacillus acidophilus.	<d/*L 1.7 - 500.0</d	x10^3 CFU/g ●
Lactobacillus casei.	<d/*L 1.7 - 500.0</d	x10^3 CFU/g ●
Lactobacillus delbrueckii	3.9 1.7 - 500.0	x10^3 CFU/g ●
Lactobacillus plantarum.	<dl*l -="" 1.7="" 500.0<="" th=""><th>x10^3 CFU/g ●</th></dl*l>	x10^3 CFU/g ●
Lactobacillus rhamnosus	2.6 1.7 - 500.0	x10^3 CFU/g
Lactobacillus salivarius	<d/*L 1.7 - 500.0</d	x10^3 CFU/g ●
Clostridium species	9.5 5.0 - 50.0	x10^7 CFU/g ●
Oxalobacter formigenes	0.67*L > 5.00	x10^6 CFU/g ●
Akkermansia muciniphila	1.80 1.00 - 50.00	x10^7 CFU/g
Faecalibacterium prausnitzii	9.3 *L 200.0 - 3500.0	0 x10^6 CFU/g

Actions	L. plantarum HEAL9	L. paracasel 8700:2	L. plantarum HEAL19	L. plantarum 6595	L. plantarum 299V	L. rhamnosus GG	L. acidophilus LA02	animals subsp. lactis BS01	L. casei LC03	B. breve BR03	L. fermentum LF08	L. crispatus strains	animals subsp. lactis BA05	L. plantarum LP01	L. rhamnosus LR06	B. longum 04	L. fermentum LF16	L. salivarius LS01	B. breve B632	L. fermentum LF10	L. salivarius LS03	L. helveticus Rosell-52	L. rhamnosus Rosell-11	B. longums Rosell-75	boulardii CNCM I-1079	S. thermophilus FP4
Intestinal epithelial barrier health				•	•	•			•	•								•				•	•		•	
Mucous membrane health				•		•																	•		•	
Normalisation of bowel movements					•	•	•	•		•				•								•				
Normalisation of bloating					•	•	•	•		•				•												
Normalisation of peristalsis					•	•	•	•		•				•											•	
Autoimmune immunomodulation	•	•	•		•	•																				
Inhibition of pathogenic overgrowth				•	•	•				•									•		•	•	•	•	•	
Inactivate microbial toxins																									•	
Increase infection resistance	•	•		•		•		•														•		•	•	
Th1/Th2 immune cell modulation						•				•								•	•			•	•			
Staphylococci inhibition										•								•								
Gut-brain axis support					•									•	•	•	•					•		•		
GABA production						•			•																	
Bone resorption inhibition	•	•	•																							
E. coli inhibition										•				•	•				•			•	•	•	•	
Oxalate degradation						•	•							•												

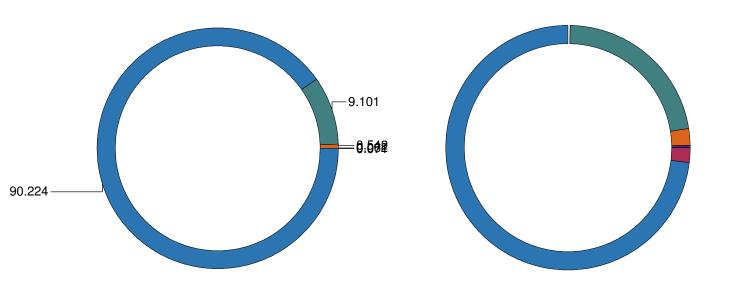
-.RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID : 4025042 UR NO. : 6297449 Collection Date : 03-Sep-2024 Received Date: 18-Sep-2024

4025042


Introduction:

Your gut microbiome is a collective name for the 40 trillion cells and up to 1000 microbial species that include bacteria, viruses, fungi, parasites, and archaea and reside in our gut. The number of gut bacterial cells is approximately equal to the total number of human cells in our body, so if we consider only cell counts, we are only about half human. In terms of gene counts, the microbiome contains about 200 times more genes than the human genome, making bacterial genes responsible for over 99% of our body's gene content! Of all the microbial communities in the human body, the gut microbiome is by far the most dense, diverse, and physiologically important ecosystem to our overall health.

Re	lative Commensal Abunda	ance Result	Range	Units
	Bacteroidetes Phylum	90.224	50.000 - 95.000	%
	Firmicutes Phylum	9.101	3.500 - 40.000	%
	Proteobacteria Phylum	0.542	0.050 - 12.500	%
	Actinobacteria Phylum	0.071	0.001 - 4.818	%
	Verrucomicrobia Phylum	0.062	0.000 - 2.400	%
	Euryarchaeota Phylum	0.000	0.000 - 0.010	%

Your Phyla:

Healthy Phyla:

References

NOTE: Relative abundance reference ranges have been based on a healthy population study.

King CH, et., al. (2019) Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One. 2019 Sep 11;14(9):e0206484.

-.RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID: 4025042 UR NO.: 6297449 Collection Date: 03-Sep-2024 Received Date: 18-Sep-2024

4025042

Pathogen Summary:

Macroscopy Comment

BROWN coloured stool is considered normal in appearance.

Faecal Occult Blood Negative:

Faecal occult blood has not been detected in this specimen. If the test result is negative and clinical symptoms persist, additional follow-up testing using other clinical methods is recommended.

Metabolism Comment

In a healthy gut Short Chain Fatty Acids (SCFAs) exhibited in the following proportions; Butyrate, Acetate, Propionate (16%:60%:24%).

The primary SCFAs butyrate, propionate and acetate are produced by predominant commensal bacteria via fermentation of soluble dietary fibre and intestinal mucus glycans.

Key producers of SCFAs include Faecalibacterium prausnitzii, Akkermansia mucinphila, Bacteroides fragilis, Bifidobacterium, Clostridium and Lactobacillus Spp.

The SCFAs provide energy for intestinal cells and regulate the actions of specialised mucosal cells that produce anti-inflammatory and antimicrobial factors, mucins that constitute the mucus barriers, and gut active peptides that facilitate appetite regulation and euglycemia. Abnormal SCFAs may be associated with dysbiosis, intestinal barrier dysfunction and inflammatory conditions.

LOW pH PRESENT: High Acidity stool.

Consider bacterial overgrowth, lipid or carbohydrate malabsorption, rapid transit time, pancreatic insufficiency. Treatment:

- Supplement digestive enzymes or other digestive aids
- Assess other CDSA markers such as fat globules, food remnants, transglutaminase IgA & microbiology markers.
- Investigate causes of malabsorption or diarrhoea.

Page 6 of 10 Complete Microbiome Map V2 Lab ID: 4025042 Patient Name: MARTYN LILLFORD Printed: 26/Sep/24 14:29

-.RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID: 4025042 UR NO.: 6297449 Collection Date: 03-Sep-2024 Received Date: 18-Sep-2024

4025042

GIT Markers Comment

PANCREATIC ELASTASE: Normal exocrine pancreatic function.

Pancreatic Elastase reflects trypsin, chymotrypsin, amylase and lipase activity.

This test is not affected by supplements of pancreatic enzymes.

Healthy individuals should be producing >500 ug/g of PE-1 under normal/healthy conditions.

PE-1 levels between 200 - 500 ug/g may indicate suboptimal production.

PE-1 levels <200 ug/g indicate clear inadequate production.

The clinician should therefore consider digestive enzyme supplementation if one or more of the following conditions is present: Loose watery stools, Undigested food in the stools, Post-prandial abdominal pain, Nausea or colicky abdominal pain, Gastroesophageal reflux symptoms, Bloating or food intolerance.

Testing performed by chemiluminescence immunosassay (CLIA).

CALPROTECTIN Normal:

Faecal calprotectin values <50 ug/g are not indicative of inflammation in the gastrointestinal tract. Subjects with low faecal calprotectin levels normally do not need to be further investigated by invasive procedures. In patients with strong clinical indications of intestinal inflammation, repeat testing may be useful.

Test performed by Phadia EliA Fluorescence enzyme immunoassay (FEIA).

SECRETORY IGA NORMAL:

Secretory IgA is within range.

Secretory IgA represents the first line of defence of the gastrointestinal mucosa and is central to the normal function of the gastrointestinal tract as an immune barrier. Review this level with other pathogenic bacteria and normal commensal flora. Lower levels within reference range should be interpreted clinically.

ZONULIN NORMAL:

Zonulin is a protein that modulates intestinal barrier function. This results is considered normal.

beta-GLUCORONIDASE NORMAL:

 $\ensuremath{\mathsf{B-Glucuronidase}}$ is considered normal and is within reference range.

ELEVATED STEATOCRIT:

The presence of steatorrhea is an indirect indicator of incomplete fat digestion. Consider high dietary fat intake, cholestasis, malabsorption and digestion (diarrhoea, pancreatic or bile salt insufficiency), intestinal dysbiosis, parasites, NSAIDs use, short bowel syndrome, whipple disease, crohn's disease, food allergies & sensitivities.

Treatment:

- o Prebiotic and probiotic supplementation
- o Supplement hydrochloride, digestive enzymes or other digestive aids
- o Investigate underlying causes
- o Investigate food sensitivities and allergies
- o Remove potential irritants
- o Review markers such as pancreatic elastase 1 and calprotectin

Page 7 of 10 Complete Microbiome Map V2 Lab ID: 4025042 Patient Name: MARTYN LILLFORD Printed: 26/Sep/24 14:29

-.RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID : 4025042 UR NO. : 6297449 Collection Date : 03-Sep-2024 Received Date: 18-Sep-2024

4025042

Normal Bacterial Flora Comment

BIFIDOBACTERIUM BIFIDUM LOW:

PHYLUM: Actinobacteria

DESCRIPTION:

Bifidobacterium bifidum is a Gram-positive, anaerobic bacterium integral to the human gut microbiota, especially in infants. It ferments a variety of carbohydrates, including human milk oligosaccharides, aiding in digestion, and promoting a healthy gut flora. B. bifidum produces short-chain fatty acids that lower gut pH and inhibit pathogenic bacteria while supporting intestinal cells. It also modulates the immune system, enhancing immune responses and reducing inflammation, and strengthens the intestinal barrier. Clinically, B. bifidum has shown promise in alleviating gastrointestinal disorders.

BIFIDOBACTERIUM BREVE LOW:

PHYLUM: Actinobacteria

DESCRIPTION:

Bifidobacterium breve is a Gram-positive, anaerobic bacterium that is commonly found in the human gastrointestinal tract, particularly in the intestines of infants. B. breve is known for its ability to metabolise various carbohydrates, including human milk oligosaccharides, which is essential for the development of a healthy gut flora in newborns.

Studies demonstrate that B. breve exhibits several beneficial properties, including the production of short-chain fatty acids (SCFAs) such as acetate, which contribute to gut health by lowering pH and inhibiting the growth of pathogenic bacteria.

Additionally, B. breve may alleviate symptoms of irritable bowel syndrome (IBS) and improve symptoms of atopic dermatitis.

ENTEROCOCCUS SPECIES LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Enterococci are Gram-positive facultative anaerobic cocci commonly found in the environment, water, food, human skin, oral cavity and intestine. Strains belonging to the genus Enterococcus produce a wide variety of bacteriocins which are active against Gram-positive foodborne pathogens. Certain Enterococcus species have also been found to produce butyrate, a metabolic product that induces significant anti-inflammatory effects and contributes to intestine epithelial integrity. Low levels of enterococcus species may be associated with increased inflammation and susceptibility to foodborne pathogens. Review this with other beneficial flora.

TREATMENT SUGGESTIONS: Commensal probiotic cocktails are suggested to elevate colonization.

LACTOBACILLUS ACIDOPHILUS LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Lactobacillus acidophilus is a Gram-positive, rod-shaped, non-spore-forming bacterium commonly found in the human gut and fermented foods. It plays a key role in oxalate degradation, bowel normalisation and may assist patients with bloating.

TREATMENT SUGGESTIONS:

Consider probiotic supplementation containing L. acidophilus.

LACTOBACILLUS CASEI LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Lactobacillus casei is a Gram-positive, rod-shaped, non-spore-forming, anaerobic probiotic bacterium involved in the fermentation of foods like cheese and yogurt. It produces antimicrobial substances, enhances gut barrier function, reduces pathogenic bacteria, and modulates the immune system. This bacterium is used to prevent and may assist various forms of diarrhea, including infectious diarrhea, traveller's diarrhea, and antibiotic-associated diarrhea.

TREATMENT SUGGESTIONS:

Consider probiotic supplementation containing L. casei and consuming fermented foods such as cheese and yogurt.

LACTOBACILLUS PLANTARUM LOW:

PHYLUM: Firmicutes

-.RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID : 4025042 UR NO. : 6297449 Collection Date : 03-Sep-2024 Received Date: 18-Sep-2024

4025042

DESCRIPTION:

Lactobacillus plantarum is a Gram-positive, non-spore-forming, rod-shaped bacterium. L. plantarum plays a crucial role in gut health by enhancing intestinal barrier function, modulating the immune system, and inhibiting pathogenic bacteria. Additionally, it is beneficial for conditions such as irritable bowel syndrome, ulcerative colitis, and high cholesterol.

TREATMENT SUGGESTIONS:

Consider probiotic supplementation containing L. plantarum.

LACTOBACILLUS SALIVARIUS LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Lactobacillus salivarius is a Gram-positive, rod-shaped, non-spore-forming bacterium predominantly found in the human oral cavity, gastrointestinal tract, and vagina. It plays a significant role in maintaining oral and gut health by producing lactic acid and bacteriocins, which inhibit the growth of pathogenic bacteria. L. salivarius enhances gut barrier function, modulates the immune system, and helps in the digestion of proteins and complex carbohydrates. It has been studied for its potential benefits in managing conditions such as irritable bowel syndrome (IBS), periodontal disease, and atopic dermatitis, highlighting its importance in promoting overall health and preventing infections.

TREATMENT SUGGESTIONS:

Consider L. salivarius as a probiotic strain which may improve intestinal permeability and immune response.

OXOLOBACTER FORMIGENES LOW:

PHYLUM: Proteobacterium

DESCRIPTION:

Oxalobacter formigenes is a Gram negative oxalate-degrading anaerobic bacterium. Oxolate is formed in the liver by amino acid catabolism as well as present in a wide range of foods including tea, coffee, chocolate and certain fruits and vegetables. High concentration of oxalate in the urine is related to the potential formation of calcium oxalate kidney stones. Oxolobacter Formigenes is the main known bacterial species involved in oxalate degradation in the gut and maintains oxalate homeostasis. Levels of O. Formigenes tends to decrease with age as well as with the use of antibiotics or other drugs. Low levels may be associated with calcium oxide stone formation, inflammatory bowel disease or Crohn's.

TREATMENT SUGGESTIONS:

Treatment options include probiotic treatment and low oxalate diet modification. Urinary oxalate levels may also need to be investigated.

FAECALIBACTERIUM PRAUSNITZII LOW:

PHYLUM: Firmicutes

DESCRIPTION:

Faecalibacterium prausnitzii is gram-positive, rod-shaped, anaerobic and is one of the most abundant and important commensal bacteria of the human gut microbiota. It is a key producer of Short Chain Fatty acids, has anti-inflammatory properties and may improve the imbalance in intestinal bacteria that leads to dysbiosis. Decreased colonisation of F. prausnitzii in the intestines have been associated with Crohn's disease, obesity, asthma, and major depressive disorders.

TREATMENT SUGGESTIONS: Treatment may involve the use of probiotics, treatment of any intestinal infections and dietary modification.

-.RACHEAL LEE (NPINS) THRIVE HEALTH SHOP 6/115 SHINGLEY DRIVE AIRLIE BEACH QLD 4802

MARTYN LILLFORD 02-Apr-1990 Male

240 FRONT STREET WHITSUNDAYS QLD 4802

LAB ID : 4025042 UR NO. : 6297449 Collection Date : 03-Sep-2024 Received Date: 18-Sep-2024

4025042

The Four "R" Treatment Protocol

	Using a course of antimic robial, antibacterial,	ANTIMICROBIAL	Oil of oregano, berberine, caprylic acid							
	antiviral or anti parastic therapies in cases where organisms are present. It may also be necessary to remove offending foods, gluten, or	ANTIBACTERIAL	Liquorice, zinc carnosine, mastic gum, tribulus, berberine, black walnut, caprylic acid, oil of oregano							
REMOVE		ANTIFUNGAL	Oil of oregano, caprylic acid, berberine, black walnut							
BE	medication that may be acting as antagonists.	ANTIPARASTIC	Artemesia, black walnut, berberine, oil of oregano							
	Consider testing IgG96 foods as a tool for removing offending foods.	ANTIVIRAL	Cat's claw, berberine, echinacea, vitamin C, vitamin D3, zinc, reishi mushrooms							
		BIOFILM	Oil of oregano, protease							
REPLACE	In cases of maldigestion or malabsorption, it may be necessary to restore proper digestion by supplementing with digestive enzymes.	DIGESTIVE SUPPORT	Betaine hydrochloride, tilactase, amylase, lipase, protease, apple cider vinegar, herbal bitters							
ш	Recolonisation with healthy, beneficial bacteria.	PREBIOTICS	Sippery elm, pectin, larch arabinogalactans							
RENOCULATE	Supplementation with probiotics, along with the use of prebiotics helps re-establish the proper microbial balance.	PROBIOTICS	Bifidobacterium animalis sup lactise, lactobacillus acidophilus, lactobacillus plantarum, lactobacillus casei, bifidobacterium breve, bifidobacterium bifidum, bifidobacterium longum, lactobacillus salivarius sep salivarius, lactobacillus paracasei, lactobacillus rhamnosus, Saccaromyces boulardii							
BALANCE	Restore the integrity of the gut mucosa by giving support to healthy mucosal cells, as well as immune support. Address whole	INTESTINAL MUCOSA IMMUNE SUPPORT	Saccaromyces boulardii, lauric acid							
<u>~</u>	body health and lifestyle factors so asto prevent future GI dysfunction.	INTESTINAL BARRIER REPAIR	L-Glutamine, a loe vera, liquorice, marshmallow root, okra, quercetin, slippery elm, zinc camosine, Saccaromyces boulardii, omega 3 essential fatty acids, B vitamins							
REPAIR		SUPPORT	Seep, diet, exercise, and stress management							