#### myDNA Comprehensive Health Report





#### Welcome to the future of health and human potential

ID: 4039163

Name: Clinton Ackerman

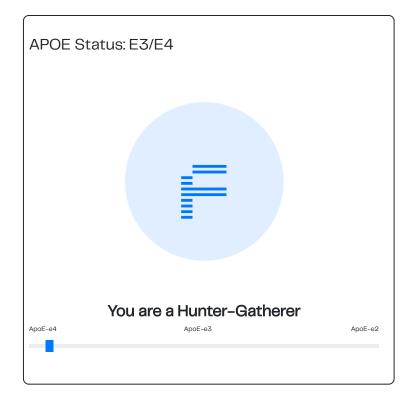
DOB: 01/01/88

Barcode: PNB2D864

Date: 11/11/24



#### TEST METHODOLOGY AND LIMITATIONS


Recommendations in this report apply to all ages, however for any patient under 18 years, a guardian must purchase the test and be present for the report recommendations. The information in this report is not intended to treat, diagnose or cure any medical condition or disease.

Gene By Gene, a wholly owned subsidiary of myDNA, Inc., is a College of American Pathologists (CAP) accredited and Clinical Laboratory Improvement Amendments (CLIA) certified clinical laboratory qualified to perform high-complexity testing. This test was developed and its performance characteristics determined by Gene by Gene. It has not been cleared or approved by the FDA. FDA does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research. Only the genomic regions listed below were tested; there is a possibility that the tested individual is a carrier for additional, undetected mutations. Although molecular tests are highly accurate, rare diagnostic errors may occur that interfere with analysis. Sources of these errors include sample mix-up, trace contamination, and other technical errors. The presence of additional variants nearby may interfere with mutation detection. Genetic counseling is recommended to properly review and explain these results to the tested individual.

#### My Health Report

| NUTRIENT METABOLISM & DIGESTION               | 4   |
|-----------------------------------------------|-----|
| METHYLATION                                   | 18  |
| HORMONE SUPPORT                               | 21  |
| MENTAL HEALTH & COGNITIVE PERFORMANCE         | 24  |
| DETOXIFICATION                                | 30  |
| IMMUNE SUPPORT, ANTIOXIDANTS AND INFLAMMATION | 36  |
| DNA PROTECTION & REPAIR                       | 45  |
| CARDIOVASCULAR HEALTH & EXERCISE              | 49  |
| STRENGTHS                                     | 55  |
| WEAKNESSES                                    | 59  |
| GROCERY LIST                                  | 64  |
| PERSONALIZED BLOOD WORK                       | 67  |
|                                               |     |
| My Clinical Research Summary                  |     |
| NUTRIENT METABOLISM & DIGESTION               | 68  |
| METHYLATION                                   | 76  |
| HORMONE SUPPORT                               | 82  |
| MENTAL HEALTH & COGNITIVE PERFORMANCE         | 88  |
| DETOXIFICATION                                | 99  |
| IMMUNE SUPPORT, ANTIOXIDANTS AND INFLAMMATION | 103 |
| DNA DAMAGE, PROTECTION AND REPAIR             | 109 |
| CARDIOVASCULAR HEALTH & EXERCISE              | 112 |





Apolipoprotein E (ApoE) is a lipid-binding protein that transports triglycerides and cholesterol in multiple tissues, including the brain. The e4 allele is common in hunter-gatherer communities, while the e3 and e2 alleles are most common in agricultural communities.

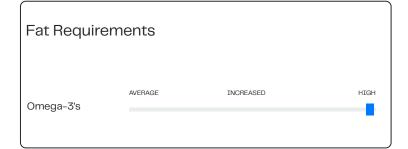
- About 25% of people carry one copy of ApoE4, and 2 to 3% carry two copies
- ApoE4 includes trade-off strengths and weaknesses from the huntergatherer period and continues to persist in the modern era
- The strengths include higher fertility rates in women and improved newborn health status, improved protection against bacterial infections, improved cognition and intelligence in early life, and better utilization of fatty acids for endurance exercise
- The weaknesses include a lower response to plant bioactive compounds, higher sensitivity to low vitamin D status, binding of zinc to amyloid plaques, increased plasma cholesterol, lower antioxidant protection, and reduced ability to repair synapses and protect neurons, especially from environmental pollution and head injuries
- The e4/e4 genotype has the strongest risk factor gene for Alzheimer's disease, although inheriting a single or double ApoE4 genotype does not mean a person will develop the disease
- The latest research has shown that the rare e2/e4 genotype is equivalent to e3/e4 in regards to Alzheimer's pathology risk
- The highest negative impact are those with Caucasian and Asian ancestry from the northern hemisphere
- In Alzheimer's patients, the need for DHA, choline, and uridine are all enhanced because their basal plasma levels may be subnormal, and a higher dosage is needed for correcting the disease-related deficiencies in the synaptic membranes and synapses
- Researchers were able to prove that a formulation with DHA, choline, uridine, B-vitamins, vitamin C, and vitamin E improved memory scores and the connectivities between brain regions among patients with early Alzheimer's Disease
- Several compounds isolated from medicinal mushrooms have been shown to promote neurite outgrowth, including those from Lion's mane mushroom, reishi, tiger milk mushroom, Ganoderma neo-japonicum, and Cordvceps militaris
- A hunter-gatherer diet focused on protein, choline, omega-3's, uridine, creatine, berries, fiber, nuts, seeds, antioxidants, lower in carbohydrates, high in potassium, and avoiding alcohol currently appears to be the best strategy for e4 carriers with northern heritage
- Cardio exercise for 30 minutes a day, 5 days a week has been found to dramatically reduce the risk of e4 and Alzheimer's disease and improve lipid markers



Traditional protein intake ranges based on latitude from less than 18% of total calories to approximately 35% in the far northern climates. Recommended protein intake varies based on weight and exercise intensity.

 Genetically, your requirements fall on the average side of the spectrum, approximately 18-20% of total caloric intake




Your carbohydrate intake range is based on the latitude of your ancestors and whether a hunter-gatherer diet or modern agricultural diet made a larger imprint on your genes.

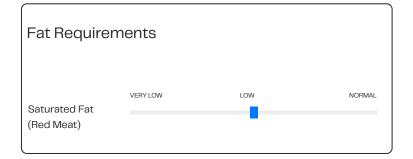
- Your genotype combination is associated with a slightly lower recommended carbohydrate intake, ranging from 30% to 40% of total calories from carbohydrates
- For a 2,000 calorie diet, this comes to 150-200 grams of carbohydrates per day



The differences between responses in individuals to refined carbohydrates have been linked to a genetic adaptation occurring during the agricultural age.

 Your genotype is associated with an adaptation for lowering the sensitivity to refined carbohydrates




The NIH has set the recommended intake of omega-3's from 1.1 to 1.6 grams per day from a combination of ALA, EPA and DHA. Omega-3 fatty acids are essential for brain, eye, and cardiovascular health.

- Your genotype combinations are associated with a higher requirement of EPA and DHA
- ApoE e2 and e3 carriers can benefit from non-phospholipid fish oil intake, however, e4 carriers should use phospholipid-based EPA and DHA as found in fish and fish roe
- For ApoE e4 carriers, fish oil supplements do not appear as effective as phospholipid-based EPA and DHA as found in fish and fish roe
- E4 carriers may have impaired transport of free DHA and require phospholipids for successful transport



Traditional total fat intake ranges based on latitude, with as low at 25% consumed in countries closer to the equator, and up to 55% of total calories from fat being consumed in northern latitudes.

- Genetic testing can show which fats to focus on, but total fat will range based on your climate and health goals
- Your genotypes are associated with an average requirement for monounsaturated and polyunsaturated fats from olive oil, avocados, poultry, nuts and seeds



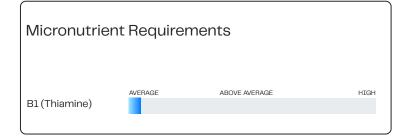
The 2020 Dietary Guidelines in the U.S. recommends limiting calories from saturated fats to less than 10% of the total calories you eat and drink each day. That's about 200 calories for a 2,000 calorie diet. Traditionally, saturated fat intake from animal foods ranged based on the season and the geographical location, with higher latitudes and more mountainous regions consuming more.

- Based on your genotype combinations, you should aim to get less saturated fat in your diet from red meat
- · Limit your red meat consumption to twice a week

Fat Requirements

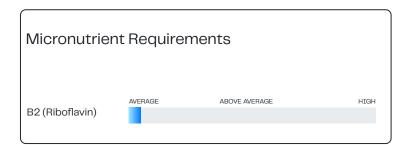
VERY LOW LOW NORMAL

Saturated Fat
(Dairy)


The 2020 Dietary Guidelines in the U.S. recommends limiting calories from saturated fats to less than 10% of the total calories you eat and drink each day. That's 200 calories for a 2,000 calorie diet.

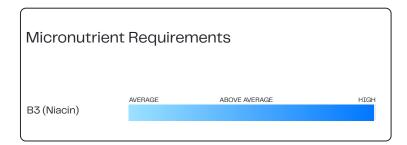
 Your genotype combinations are associated with improved metabolism of saturated fat from dairy




Celiac disease is an immune reaction to eating gluten, a protein found in wheat, barley and rye. Published research shows that approximately 30 percent of the general population have variants in the celiac disease risk genes HLA-DQA1 through HLA-DQB, yet only 3% of these individuals develop celiac disease.

- Your genotype combination is associated with a low genetic risk for celiac disease
- On a global level, the rates of celiac disease are not related either to the amount of wheat consumed by each country or to the prevalence of the HLA DR3-DQ2 and DR4-DQ8 genotypes worldwide
- First-degree relatives of people with celiac disease including parents, siblings and children have a 1 in 10 risk compared to 1 in 100 in the general population, which may be increased by existing autoimmune disorders




The recommended daily allowance (RDA) for thiamine is 1.2mg. Thiamine requirements are analyzed based on ethanol metabolism, however, chronic intake of alcohol depletes thiamine.

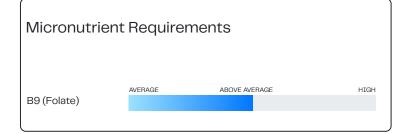
· Your genotype is associated with an average need for B1



The recommended daily allowance (RDA) for riboflavin is 1.3mg. Riboflavin is used as a co-factor for numerous reactions associated with protein, fat, and carbohydrate metabolism. Riboflavin requirements are analyzed based on MTHFR gene function.

Your genotype is associated with an average need for B2




The recommended daily allowance (RDA) for niacin is 16mg. Niacin targets genes associated with cardiovascular and skin health, while also balancing methylation levels.

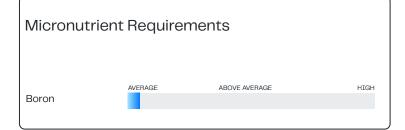
- Your genotype is associated with a higher sensitivity to low niacin intake
- Niacin in high in yellowfin tuna (37.5mg), canned tuna (21.9mg), wild salmon (17mg), ground turkey (20mg), chicken breast (16mg), liver (14.2mg), skirt steak (9.5mg), white button mushrooms (6.8mg), and brown rice (5.2mg)

#### Micronutrient Requirements B6 (Pyridoxine) AVERAGE ABOVE AVERAGE HIGH

The recommended daily allowance (RDA) for B6 is 1.7mg. B6 deficiency can manifest as anorexia, irritability, anxiety, depression, muscle pain, bad PMS/low progesterone, nausea, seizures, migraines, dermatitis, age related macular degeneration (with low folate and B12) and lethargy.

- Your genotype is associated with a higher than average need for B6
- Women of reproductive age, especially current and former users of oral contraceptives, teenagers, male smokers, non-Hispanic African-American men, and men and women over age 65 are most at risk of B6 deficiency
- B6 is high in yellowfin tuna (6 oz., 1.8mg), wild salmon (6 oz., 1.2mg), liver (3oz., 0.8mg), chicken breast (6 oz., 1mg), unfiltered fermented drinks (16oz., 0.8mg), pistachios (1 oz., 0.5mg), avocado (1 whole, 0.5mg), sweet potatoes (1 whole, 0.3mg), and spinach (1/2 cup, 0.1mg)




The recommended daily allowance (RDA) for folate is 400mcg. Folate is one of the – if not most – influential nutrigenomic micronutrient. It has a powerful influence on genes related to pregnancy, homocysteine, and cancer prevention.

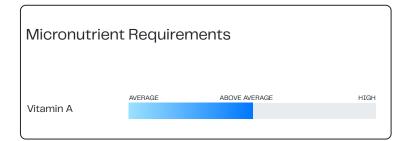
- Your genotype is associated with a higher than average need for folate
- Folate is depleted by proton pump inhibitors, oral contraceptives, NSAIDs, anticonvulsants, antivirals, antibiotics, and antacids
- Folate is high in liver (3 oz., 215mg), collard greens (1 cup cooked, 177mcg), beets (1 cup raw, 148mcg), black-eyed peas (1/2 cup, 105mg), raw spinach (1 cup 58mg), asparagus (4 spears, 89mg), hummus (1/2 cup, 83mcg), broccoli (1/2 cup cooked, 52mg), romaine lettuce (1 cup, 64mg), strawberries (1 cup, 40mcg), orange (1 whole, 39mcg), sprouted lentils (1/2 cup, 38mcg), and parsley (1 sprig, 15.2mg)



The recommended daily allowance (RDA) for B12 is 2.4mcg. B12 influences genes related to homocysteine, brain health, pregnancy, and energy. B12 requirements are based on serum levels associated with the FUT2 gene.

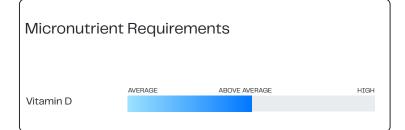
- · Your genotype is associated with low serum B12 levels
- B12 is depleted by antacids, antibiotics, proton pump inhibitors, Metformin, anticonvulsants, oral contraceptives, certain psychiatric medications
- Older adults, vegans, digestive disorders, and those who take Metformin or PPI's are at risk for B12 deficiency
- B12 is highest in liver (3 oz., 70.7 mcg), clams (3oz., 17mcg), wild salmon (6 oz., 5.2mcg), ground beef (4.8mcg), yogurt (6 oz., 1.0mcg), eggs (1 whole, 0.5mcg), and cheddar cheese (1.5 oz., 0.5mcg)




The recommended daily allowance (RDA) for boron has not been set, but 1–3mg is considered adequate. Boron is connected to bone health, hormone health and healthy SAMe levels for brain health. Men with low testosterone and women with osteoporosis or osteopenia will benefit from more boron.

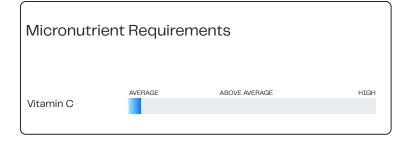
• Your genotype is associated with an average need for boron

#### Micronutrient Requirements Choline & Betaine AVERAGE ABOVE AVERAGE HIGH


The recommended daily allowance (RDA) for choline is 550mg, while betaine hasn't been set. The more betaine you consume, the less choline you require. Choline is crucial for pregnancy, lowers anxiety, prevents fatty liver, assists detoxification, and improves memory.

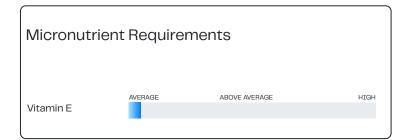
- Your genotype is associated with a higher than average need for choline and betaine
- Choline is depleted by nighttime pain relievers, antihistamines, sleep aids, antidepressants, incontinence drugs and narcotic pain relievers
- Intense endurance exercise depletes choline levels, and increasing phosphatidylcholine has been found to improve exercise capacity during high-intensity cycling and running, as well as reduce muscle soreness
- Choline is highest in liver (3 oz., 356mg), pastured eggs (2 eggs, 294mg), beef round (6 oz., 234mg), heart (3 oz., 194mg), chicken (6 oz., 144mg), wild cod (6 oz., 142mg), bacon (3.5 oz., 125mg), and edamame (1/2 cup, 107mg)
- Betaine is highest in spinach (3.5 oz., 645mg), shrimp (3.5 oz., 218mg), beets (3.5 oz., 200mg) and whole grain sourdough wheat bread (2 slices, 201mg)




The recommended daily allowance (RDA) for vitamin A is 900 mcg for men and 700 mcg per day for women. Vitamin A assists digestive lining repair, oral health, eye health, iron mobilization, mitochondria health, skin health, healthy lung function, and increased immunity.

- Your genotype is associated with a 32% lower conversion rate of betacarotene to vitamin A, making it important to include more animal-based vitamin A to hit your daily target
- Vitamin A is high in liver (3 oz., 6,600mcg), pastured eggs (1 egg, 75mcg), cod liver oil (378mcg), wild salmon oil (206mcg), pickled herring (219mcg) and sockeye salmon (118mcg)




The recommended daily allowance (RDA) for vitamin D is 20mcg. Vitamin D has a wide role in immune function, bone health, cardiovasular health and cancer prevention.

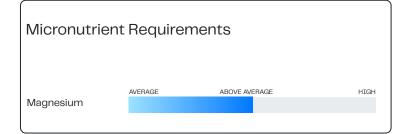
- Your genotype is associated with below average circulating levels of vitamin D
- Vitamin D is depleted by obesity, pesticides, a high fructose intake, anticonvulsants, barbiturates, benzodiazepines, calcium channel blockers, corticosteroids, antidepressants, and bronchodilators
- Vitamin D is highest in sockeye salmon (6 oz., 28.4mcg), cod liver oil (1 tsp., 11mcg), canned tuna (1 can, 6.7mcg), wild herring (3 oz., 5.4mcg), and sardines (1 can, 4mcg)



The recommended daily allowance (RDA) for vitamin C is 90mg, however, the amount consumed in the Paleolithic era was 400mg per day. Studies show the best results occur with over 500mg per day. Extensive research shows that adequate vitamin C reduces the risk of cancer, heart disease, colds, flu, cataracts, hypertension and even depression.

• Your genotype is associated with average serum vitamin C levels




The recommended daily allowance (RDA) for vitamin E is 15mg. Vitamin E is important for antioxidant protection, skin health, fertility, brain health, and cardiovascular health.

· Your genotype is associated with an average need for vitamin E



The recommended daily allowance (RDA) for vitamin K2 has not been established, but based on amounts found in food and research, 60–70mcg of MK–4 and MK–7 is a good target. MK–4 targets sex hormones, the brain, possesses anti–cancer and anti–inflammatory activity, and also supports bone health. MK–7 is considered better for reducing arterial calcification, increasing bone density, anti–cancer, improving salivary buffering (minimizes the demineralization of enamel and enhances its re–mineralization), and increasing cardiac output (12% increase) in athletes.

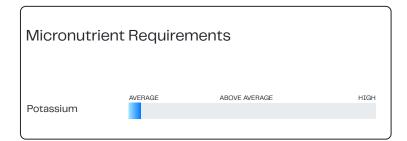
• Your genotype is associated with an average need for K2



The recommended daily allowance (RDA) for magnesium is 400mg, however, higher amounts may be required for certain individuals, stress levels and athletes. Magnesium levels vary drastically based on the soil, and therefore in the food. Magnesium is involved in 300 biochemical reactions, and deficiency has widespread effects on every aspect of health. The most common symptoms of low magnesium includes calf cramps at night, headaches, arrhythmia, calcification, and muscle fatigue.

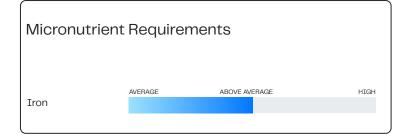
- Your genotype is associated with a higher than average need for magnesium
- Magnesium is depleted by smoking, sugar, chronic stress, high alcohol intake, coffee, tea, fluoridated water, phosphoric acid, non-fermented grains, intense exercise, high protein diets, high calcium supplementation, high arsenic levels, antacids, proton pump inhibitors, ACE inhibitors, birth control, hormone replacement therapy, Estradiol, Premarin, antibiotics, antivirals, immunosuppressants, methylphenidate, Tamoxifen and corticosteroids
- Magnesium is highest in sprouted pumpkin seeds (2 tablespoons, 156mg), hemp seeds (2 tablespoons, 116mg) chia seeds (2 tablespoons, 111mg), Gerolsteiner mineral water (1 liter, 100mg), spinach (1/2 cup cooked, 78mg), wild salmon (6oz., 52mg), and peanut butter (2 tablespoons, 49mg)




The recommended daily allowance (RDA) for manganese has not been set, however, 1.8 to 2.3mg per day is considered adequate. Manganese has a special role in protecting the mitocondria of the cells against toxicity through superoxide dismutase. Manganese is crucial for heart health, blood sugar, male fertility, bone health and protecting the brain against glutamate toxicity.

- Your genotype is associated with a higher sensitivity to low manganese intake
- Manganese is highest in mussels (3 oz., 5.8mg), wild blueberries (1/2 cup, 2.87mg), hazelnuts (2 tablespoons, 1.6mg), pecans (2 tablespoons, 1.1mg), oysters (3 oz., 1mg), clams (3 oz., 0.9mg), hummus (1/2 cup, 0.9mg), spinach (1/2 cup cooked, 0.8mg), and cultivated blueberries (1/2 cup, .33mg)




The recommended daily allowance (RDA) for lithium has not been set, with normal intake ranging from 250mcg to 3mg. Studies found an association between higher levels of lithium in local water and "beneficial clinical, behavioral, legal and medical outcomes." In the context of your genetic analysis, we are looking at lithium requirements in regards to B12 transportation.

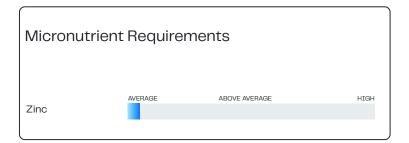
· Your genotype is associated with an average need for lithium



The recommended daily allowance (RDA) for potassium is 3,400mg for males and 2,600mg for females. Potassium is an electrolyte that helps maintain normal levels of fluid inside our cells, muscle contraction, and regulates blood pressure. The Paleolithic hunter–gatherers took in about 11,000 milligrams of potassium a day from fruits, vegetables, leaves, flowers, roots, and other plant sources, and under 700 mg of sodium.

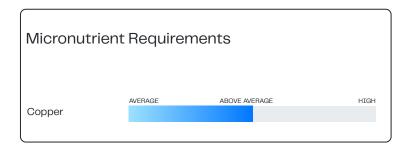
· Your genotype is associated with an average requirement for potassium




The Recommended Dietary Allowance (RDA) for all age groups of men and postmenopausal women is 8 mg/day and the RDA for premenopausal women is 18 mg/day.

- Your genotype combinations are associated with with lower serum iron levels and a moderate need for dietary iron intake
- Animal-based foods and seafood contains heme iron, while plant foods contain non-heme iron
- Heme iron has a higher absorption rate compared to non-heme iron
- Iron is highest in oysters (3oz, 8mg), beef liver (3 oz, 5mg) beef 6 oz, 4mg), sardines (3 oz, 2mg) white beans (1 cup, 8mg) dark chocolate (3 oz, 7mg), spinach (1/2 cup cooked, 3mg)




The recommended daily allowance (RDA) for selenium is 55mcg. Selenium levels in plant and animal foods vary drastically based on the soil. Selenium is a crucial mineral linked to numerous genes involved in glutathione (the master antioxidant), detoxification, immunity, thyroid health, skin health, and cancer prevention.

• Your genotype is associated with an average need for selenium



The recommended daily allowance (RDA) for zinc is 11mg. Zinc is poorly absorbed from plant foods and is highest in animal foods. Zinc plays a special role with numerous genes connected to immunity, cancer prevention, detoxification, skin health, eye health and more.

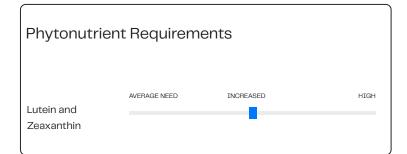
· Your genotype is associated with an average serum zinc levels



Typical diets meet or exceed the copper RDA and copper deficiency is rare. The RDA for copper is 900mcg. Copper is involved in the regulation of gene expression, brain development, neurotransmitters, cardiovascular health, and immune system functioning.

- Your genotype is associated with slightly lower serum copper levels
- Copper is highest in liver (3 oz. 12,400mcg), oysters (4,850mcg), potatoes (675mcg), shiitake mushrooms (1/2 cup, 650mcg), cashew (1 oz., 629mg), sunflower seeds (1/4 cup, 615mg) and dark chocolate (1 oz., 615mcg)




The recommended amount of fiber is up to  $25~{\rm grams}$  per day for women and up to  $38~{\rm grams}$  per day for men.

Your genotypes are associated with an average requirement for prebiotic fiber

### Phytonutrient Requirements AVERAGE NEED INCREASED HIGH Phytoestrogens

Phytoestrogens are plant derived compounds found in a wide variety of foods. There are pros and cons to phytoestrogen intake that appears to have a genetic, age, and gut health connection for determining optimal intake.

- Your genotype combinations are associated with a higher than average need for phytoestrogens for healthy hormones
- Phytoestrogens are highest in soy, flax, beans, rye, wheat, hummus, peanuts, tahini sauce, and cruciferous vegetables



A recommended daily intake of lutein and zeaxanthin hasn't been established. Lutein and zeaxanthin can help protect your eyes from harmful high-energy light waves like UV sunlight.

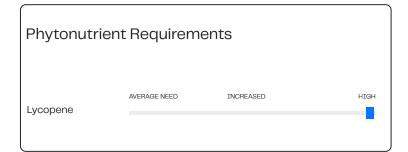
- Your genotype is associated with an increased need for foods high in lutein and zeaxanthin to support eye health
- Around 700 carotenoids have been discovered and only lutein and zeaxanthin are found in the eye
- American adults typically consume 1–3 mg/day of lutein and zeaxanthin, the Spanish consume 3.5 mg/day, the Germans consume 5.33 mg/day, and older Australians consume 0.9mg per day
- For reducing the risk of eye disorders, the estimated target is 6mg or more of lutein and zeaxanthin daily
- The foods highest in lutein and zeaxanthin include cooked spinach (1/2 cup, 12.64 mg lutein), raw spinach (1/2 cup, 6.6mg lutein), cooked kale (1/2 cup, 8.88mg lutein), egg yolks (1 egg, 237mcg lutein and 216mcg zeaxanthin), and orange peppers (208mcg lutein and 1665mcg zeaxanthin)



Research strongly suggests that long term consumption of diets rich in plant polyphenols offer protection against development of cancers, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases.

 Your genotype is associated with a slower metabolism of certain polyphenols, which means you have a higher benefit with a lower intake of green tea, coffee, berries, and chocolate




 $\label{thm:causing-decomposition} \mbox{Cinnamon lowers blood glucose usually without causing hypoglycemia and increases satiety.}$ 

 Your genotype is associated with an average need for cinnamon to control blood sugar

## Phytonutrient Requirements AVERAGE NEED INCREASED HIGH Cruciferous Vegetables

Isothiocyanates from cruciferous vegetables are known for their anti-cancer activity. Certain genotypes require higher levels of this anti-cancer activity.

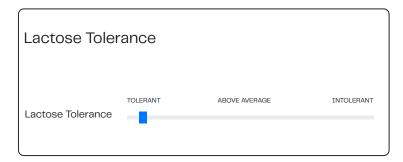
- Your genotype combinations are associated with a higher requirement of cruciferous vegetables
- Cruciferous vegetables include broccoli, Brussels sprouts, cabbage, cauliflower, radishes, turnips, Bok choy, and watercress
- · Aim for 1-2 cups of cruciferous vegetables per day



Lycopene is found in tomatoes, watermelon, guava and pink grapefruit, and has unique benefits for the heart, breast, prostate and skin.

 Your genotype combinations are associated with a higher than average requirement for lycopene




Apigenin is a flavonoid that possess anti-inflammatory, antioxidant and anti-cancer properties. Certain genotypes require higher levels for prostate health.

 Your genotype is associated with an average need for apigenin for prostate health



Resveratrol is a plant chemical produced in response to stress from the elements, and has been found to protect against heart disease and potentially extend life.

 Your genotype combinations are associated with an average requirement for resveratrol and heart health

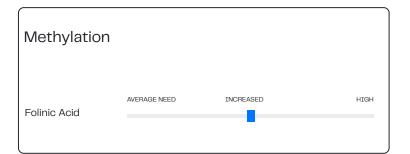


Lactose is the major carbohydrate in milk. The arrival of farming in Europe around 8,500 years ago necessitated adaptation to new environments, pathogens, diets, and social organizations. One of the best examples of genetic dietary changes to this is the lactase enzyme in northern Europeans that only dates to the last 4,000 years.

- Your LCT genotype is associated with lactose tolerance
- The ability to digest lactose is much more common in people of European ancestry
- Approximately 32 percent of the world's population is lactose tolerant
- Since this gene only looks at lactose, sensitivities to dairy can still exist



Variants in the CYP1A2 gene determine the rate at which you metabolize caffeine.


 You are an intermediate metabolizer of caffeine, meaning your body breaks down caffeine at an intermediate rate, giving you an average sensitivity to the effects of increased consumption





MTHFR 677 and MTHFR 1298 genotypes determine your folate requirements to assist normal homocysteine levels.

 Your genotype combination is associated with an average requirement for folate to maintain healthy homocysteine levels



Folinic acid is a second type of folate found in folate-rich food.

 You have a higher than average requirement for folinic acid to maintain healthy methylation and homocysteine levels



Vitamin B6 plays an important role in homocysteine metabolism and CBS gene function.

- A combination of your genotypes related to vitamin B6 serum levels and methylation requirements are associated with a higher than average requirement for B6 to maintain healthy methylation and homocysteine levels
- B6 is highest in wild salmon, wild cod, pistachios, avocados, Yukon gold or red potatoes, taro root, sweet potatoes, spinach, cauliflower and unfiltered fermented drinks
- Many medications deplete B6 including antibiotics, oral contraceptives,
   ACE inhibitors, antacids, and proton pump inhibitors



Vitamin B12 plays an important role in homocysteine metabolism.

- You have a higher than average requirement for B12 to maintain healthy methylation and homocysteine levels
- B12 is highest in animal foods and seafood
- B12 is depleted by antacids, antibiotics, proton pump inhibitors, Metformin, oral contraceptives, and yeast overgrowth

Methylation

AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY

Riboflavin (B2)

Vitamin B2 plays a special role in stabilizing the MTHFR gene for homocysteine metabolism.

 Your genotype is associated with an average requirement for riboflavin to maintain healthy methylation and homocysteine levels



Choline and betaine play a crucial role in homocysteine metabolism, especially for those with variants in MTHFR.

- Your genotype is associated with a higher than average requirement for choline and betaine to maintain healthy methylation and homocysteine levels
- Low choline intake can manifest as memory issues, NAFLD, anxiety, neurological disorders, breast cancer, histamine issues, gallbladder issues, and SIBO
- Choline may be depleted by nighttime pain relievers, antihistamines, sleep aids, antidepressants, incontinence drugs and narcotic pain relievers
- Intense endurance exercise depletes choline levels, and increasing phosphatidylcholine has been found to improve exercise capacity during high-intensity cycling and running, as well as reduce muscle soreness



Certain genotypes in the folate metabolism pathway can affect the metabolism of synthetic folic acid, leading to high circulating levels.

Your genotype combinations may improve the metabolism of synthetic folic acid



## Hormone Support AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY Estrogen Detoxification

There are multiple genes in the estrogen detoxification pathway that have a cumulative value on the ability to properly detoxify estrogen.

- Your combination of numerous genotypes in the estrogen pathway are associated with reduced estrogen detoxification
- To reduce the risk of harmful estrogen metabolites, you should avoid xenoestrogens, manage stress levels, and focus on gut health
- Increasing prebiotic fiber, polyphenols, magnesium and bifidobacteria may improve breast health by reducing the amount and activity of harmful estrogen metabolites



Numerous gene combinations are required to determine a cumulative value of prostate protection.

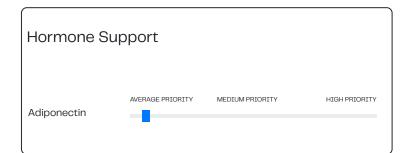
- Your genotype combination is associated with reduced prostate protection
- Improve prostate protection with selenium, vitamin C, B1, B6, folate, zinc, magnesium, healthy iron levels, milk thistle, holy basil, and cruciferous vegetables



A combination of genotypes have been associated with low, average and above average testosterone levels.

- Your genotype combination is associated with average baseline testosterone levels
- Testosterone promotes lean body mass, decreases recovery time and gives a psychological edge of confidence, concentration, cognitive function and determination
- Low testosterone leads to obesity, loss of muscle, weak bones, and depression, but also increases the odds of heart disease, diabetes, Alzheimer's and other major health problems
- Testosterone peaks throughout puberty and continues to stay in optimal ranges until around 40 years old
- Magnesium, zinc, vitamin D, omega-3's, boron, fat intake, compound weight lifting, sprints, chopping wood and eight hours of sleep per night have all been found to increase testosterone
- The optimal level appears to in the 550-900 ng/dl range to reduce risk according to the American College of Cardiology




Pesticides, cadmium, mercury, and arsenic have all been shown to lower GSTP1 expression, increasing the elevation and toxicity of these chemicals and heavy metals. The exposure and sensitivity to these chemicals and heavy metals are suspected reasons for the increased risk of male infertility related to GSTP1 variants.

 Your genotype is associated with improved sperm protection against environmental pollution.



T3 and T4 level variations have been associated with variants in the DIO1 gene.

- Your genotype is associated with low T3 and high T4 levels due to being more susceptible to chlorine-based chemicals blocking the DIO1 enzyme from converting T4 to T3
- T3 and T4 levels can still be in range based on other epigenetic factors
- Avoid organochlorines from non-organic meat, dairy, fruits and vegetables, and PCBs from seafood in polluted areas

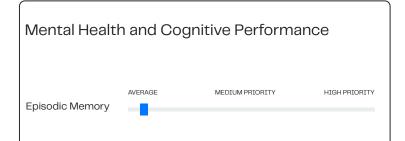


ADIPOQ encodes for adiponectin, a protein secreted by fat cells that affect insulin and glucose metabolism. Low levels of adiponectin play a role in obesity, insulin resistance and Type 2 diabetes.

 Your genotype is associated with normal adiponectin levels, which can increase the effect of insulin, improve glucose metabolism and assist a healthy body weight



Variants in genes related to ghrelin levels and dopamine receptor density have been shown to create a larger appetite and the potential for overeating in multiple populations.


- Your genotypes are not associated with higher ghrelin levels
- You are at a decreased risk for overeating and abdominal weight gain



### Mental Health and Cognitive Performance AVERAGE MEDIUM PRIORITY HIGH PRIORITY Brain Repair and Maintenance

Multiple genes are responsible for daily neural repair and maintenance, and a combination of genotypes are associated with decreased neural repair.

- Your genotype combination is associated with reduced neural repair, which can affect healing from brain injuries and amplify damage from poor sleep patterns
- · Limit or avoid activities with a high risk of concussions
- · Get eight hours of sleep per night for optimal repair
- Be proactive with neural repair by focusing on safe endurance exercise,
   DHA, B-vitamins, Lion's Mane mushroom, zinc, vitamin C, and vitamin E



The 5-HT2A gene is associated with episodic memory, which is the ability to recall details of an event.

• Your 5-HT2A genotype is associated with an improved episodic memory

## Mental Health and Cognitive Performance AVERAGE MEDIUM PRIORITY HIGH PRIORITY Cardio, Mood and Cognitive Fitness

Cardiovascular exercise has a tremendous influence on neurotransmitter balance, memory and cognitive fitness.

- You have a higher than average requirement for cardiovascular exercise to improve mood and cognitive fitness
- Research shows that at least 30 minutes of cardio, 5 times a week, is the target to hit for improved mood and cognitive fitness

Mental Health and Cognitive Performance

AVERAGE MEDIUM PRIORITY HIGH PRIORITY

Mood (Folate)

MTHFR genotypes determine folate requirements for healthy BH4 levels responsible for neurotransmitter balance. The current daily value for folate is 400mcg DFE.

- Your genotype may require 400-600mcg (or more) for healthy BH4 levels responsible for neurotransmitter balance
- Foods high in folate include:
- · Liver (215mg) 3 oz.
- Spinach (131mg) 1/2 cup cooked
- · Asparagus (89mg) 4 spears
- Brussels sprouts (78mg) 1/2 cup
- Broccoli (52mg) 1/2 cup

#### Mental Health and Cognitive Performance AVERAGE MEDIUM PRIORITY HIGH PRIORITY Anxiety (Choline)

The PEMT gene is associated with your required choline intake to support memory, anxiety and REM sleep.

- Your PEMT genotype is associated with a higher need for choline (550mg or more) to support memory, anxiety and REM sleep
- Research has shown that uridine, DHA, and choline combined increases levels of phosphatidylcholine in the brain more than each on their own
- · Foods high in choline include:
- · Liver (356mg) for 3 oz.
- Egg (294mg) for 2 eggs
- · Beef top round (234mg) for 6 oz.
- Chicken breast (144mg) for 6 oz.
- · Chicken thigh (120mg) for 6 oz.
- Edamame (107mg) for 1/2 cup

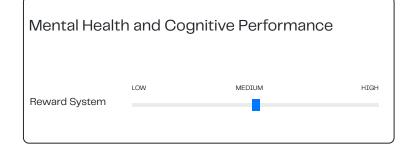
# Mental Health and Cognitive Performance AVERAGE MEDIUM PRIORITY HIGH PRIORITY Anxiety (Glutamate and GABA)

Anxiety is linked to altered levels of one or multiple neurotransmitters.

Understanding the genetic link to specific levels of neurotransmitters can help you be precise in your approach to reduce anxiety.

- Your genotype combination is associated with a reduced modulation of glutamate levels that could cause high glutamate and low GABA that could lead to anxiety
- Too much sugar and caffeine can create a high glutamate and low GABA mental state
- Cardio exercise, HIIT training and yoga have all been found to balance glutamate and GABA levels
- B6 and magnesium help convert excess glutamate to GABA (the calming neurotransmitter)
- Increase prebiotic intake to increase GABA levels and slow down an overactive mind at night to assist sleep

### Mental Health and Cognitive Performance AVERAGE MEDIUM PRIORITY HIGH PRIORITY Fear Response


The FAAH gene is associated with anandamide levels, correlated with a heightened fear response to potential threats, while BDNF variants affect the ability to extinguish the fear response.

- Your genotype combination is associated with a heightened fear response that may affect your ability to extinguish fear memories
- Getting 30 minutes or more of aerobic exercise per day (especially in altitude), CBD, and hops help increase anandamide – known as the "bliss molecule" – to reduce the fear response

### Mental Health and Cognitive Performance AVERAGE MEDIUM PRIORITY HIGH PRIORITY Addiction

ANKK1 modulates the density of dopamine receptors in the brain and is the most-studied genetic variant related to addictions. Variants have been associated with alcoholism, opioid addiction, sugar addictions, compulsive eating, obesity and Internet addiction.

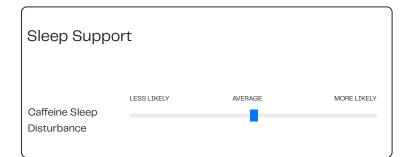
 Your genotype is associated with a improved density of dopamine receptors for the ANKK1 gene, increasing dopamine targets within the striatum of the brain and reducing addiction susceptibility



COMT rs4680 has been linked in a meta-analysis to variations in the reward response based on genotypes associated with low and high dopamine levels.

 Your genotype is associated with a slightly higher dopamine response to reward processing that could improve motivation as well as decision making




Your COMT genotype is associated with the "Hybrid" that has intermediate to high levels of dopamine and may be able to express the Warrior or Strategist traits depending on life experience. Higher dopamine is useful in complex environments that require maximal performance in terms of memory and attention for survival.

- If your levels of dopamine get too high and you find yourself irritable, impulsive, and stressed, add strength training 3–5 times a week and increase your magnesium and vitamin C intake for balance.
- Average to low catecholamine intake recommended (coffee, green tea, berries, chocolate)
- For men and premenopausal women, avoid IPA beers due to a higher estrogenic effect that can slow COMT down further



Research has found that MTNR1B G allele carriers had a significant association with delayed melatonin release in the evenings and a substantially longer duration of elevated melatonin levels in the morning.

- Your genotype in the melatonin receptor gene is related to later wake times (later than 6:30am) due to a delay of melatonin cessation
- To wake up earlier than 6:30am, you require more light exposure to assist ending melatonin release
- Melatonin supplementation is best avoided for G carriers due an increased risk of impaired glucose tolerance and elevated blood sugar



The rate at which caffeine is metabolized genetically is associated with variations of sleep disturbance.

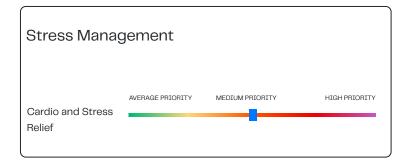
- You are an intermediate metabolizer of caffeine, which could affect sleep if caffeine is consumed in the late afternoon or evening
- To accelerate the metabolism of caffeine, schedule cardio exercise after consumption and increase cruciferous vegetable intake



Acetylcholine plays a role in promoting REM sleep, the phase that occurs while we dream and where memory consolidation occurs.

- Your genotype is associated with increased sensitivity to not meeting your daily choline requirements for acetylcholine production and REM
- You may be more sensitive to anticholinergic drugs, which block acetylcholine and have been found in research to cause cognitive decline
- Make sure you are getting at least 550mg of choline per day, walking 45 minutes or more per day, and if consuming alcohol, you will sleep better if you consume it before 6:00pm and limit the quantity




Your perception of stress is unique to your genotypes and life experience. Variants in 5-HT2A are associated with perceived stress, low vagal tone, anxiety, depression, OCD, and IBS, especially in females.

- · Your genotypes are associated with a higher perception of stress
- Moderate intensity aerobic exercise, meditation and yoga are recommended for stress relief
- Tryptophan, green or black tea, prebiotics, probiotics, B2, B6, B12, and folate all target the 5-HT2A gene to help lower stress perception



The G allele carriers of ADRB2 were associated with a higher percentage of IBS cases, twice the rates of anxiety, and functional chest pain diagnoses.

- Your genotype is associated with a higher percentage of digestive issues from stress and elevated adrenaline levels
- If you experience any of these, you may benefit from a deep breathing practice, meditation, yoga, vitamin C, and magnesium to modulate adrenaline levels

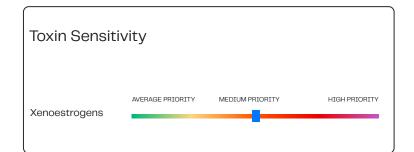


The 5-HT2A gene for the serotonin has a role in BDNF regulation – which helps regulate the excitatory neurotransmitter glutamate and calming neurotransmitter GABA. The A allele for 5-HT2A rs6314 was found to cause a lower expression of BDNF, and can compound the effect for those with variants in BDNF for mood and behavior in response to stress.

 Your genotype combination is associated with an increased susceptibility to low BDNF levels in response to stress, causing high glutamate and low GABA levels in the brain

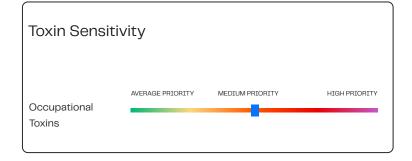


Weight lifting has a higher impact on hormonal pathways that may provide higher levels of stress relief based on the speed of these pathways.


- Your genotype is associated with slightly higher dopamine levels and a reduced clearance of adrenaline
- Weight lifting helps speed up the pathway responsible for clearing excess dopamine and adrenaline, and therefore is a useful tool for you to use for chronic stress






Mycotoxins are toxic compounds that are naturally produced by certain types of fungi. Research suggests that mycotoxins can decrease the formation of glutathione due to decreased gene expression of the enzymes needed to form glutathione.

- Your genotype is associated with lower glutathione levels which may cause glutathione depletion to occur at a faster rate and decrease mycotoxin detoxification
- The highest exposure to mycotoxins can be in foods grown or stored in damp conditions
- This may include grains, nuts, corn, coffee, wine, beer, grape juice, sorghum, rice, dried beans, apples, pulses, cacao products, and spices
- Boosting glutathione can be accomplished with selenium, glycine, cysteine, alpha lipoic acid, vitamin C, and cruciferous vegetables




 $\label{thm:constraints} \mbox{\ensuremath{\mathsf{Xenoestrogens}}} \mbox{\ensuremath{\mathsf{are}}} \mbox{\ensuremath{\mathsf{synthetic}}} \mbox{\ensuremath{\mathsf{hormone}}} \mbox{\ensuremath{\mathsf{disruptors}}} \mbox{\ensuremath{\mathsf{found}}} \mbox{\ensuremath{\mathsf{in}}} \mbox{\ensuremath{\mathsf{plastics}}} \mbox{\ensuremath{\mathsf{and}}} \mbox{\ensuremath{\mathsf{pastics}}} \mbox{\ensuremath{\mathsf{and}}} \mbox{\ensuremath{\mathsf{ensuremath{\mathsf{arg}}}} \mbox{\ensuremath{\mathsf{arg}}} \mbox{\ensuremath{\mathsf{and}}} \mbox{\ensuremath{\mathsf{arg}}} \mbox{\ensuremath{\mathsf{arg}}$ 

- Your genotype is associated with a slower metabolism of xenoestrogens, and therefore the damage may be greater from xenoestrogen exposure
- Increasing magnesium targets the enzyme responsible for assisting xenoestrogen detoxification



Workers exposed to certain chemicals over a long period in the metalworking, petroleum, agricultural industries and in glass factories are at increased risk for occupational skin cancers.

- Your genotypes are associated with an increased sensitivity to these toxins
- Focus on zinc, selenium, niacin, and vitamin C to improve DNA protection for skin health
- Ellagic acid, lutein, zeaxanthin, cocoa polyphenols, chaga tea, green tea and citrus have all been found to help protect against skin damage and cancerous growth



ALDH2 encodes for aldehyde dehydrogenase, and variants can affect the levels of acetaldehyde and therefore the carcinogenic effect of alcohol.

 Your genotype is not associated with a higher risk of alcohol-related adverse reactions including flushing, palpitation, nausea, headache, drowsiness, breathlessness, and general discomfort



The International Agency for Research on Cancer has classified formaldehyde as carcinogenic to humans. Sources of formaldehyde in the home include building materials, smoking, household products, gas stoves, kerosene space heaters, as a food preservative, permanent-press clothes, and draperies, as a component of glues and adhesives, and as a preservative in some paints and coating products. Variants in the XRCC3 DNA repair gene have been associated with higher DNA damage from formaldehyde.

 Your genotype is not associated with an increased sensitivity to formaldehyde



Benzo(a)pyrene is a carcinogenic compound produced from the burning of wood or trash, tobacco smoke, asphalt, coal, diesel exhaust, charred meat, and gas cooking.

- Your genotype combinations are associated with decreased detoxification of benzo(a)pyrene
- It is recommended to increase your intake of cruciferous vegetables, vitamin C, vitamin E, vitamin A, resveratrol, curcumin, green tea, and white tea to protect and detoxify benzo(a)pyrene



Aromatic amines are found in cigarettes, rubber factories, hair dyes that contain 4-aminobiphenyl, and meat cooked at high temperatures.

- Your genotype combinations are associated with a poor detoxification ability of aromatic amines
- If your exposure is higher to aromatic amines, increase cruciferous vegetable intake, carotenoids, vitamin C, and use marinades for meat when barbecuing

Toxin Sensitivity

AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY

Benzene

Sources of benzene include cigarette smoke, gasoline, exhaust, fires, industrial emissions, paint, detergent, glue, furniture wax, building materials, paint, petrochemical manufacturing, oil storage tanks, urban-industrial areas, service stations, certain foods, certain creams, groundwater contamination, and underground gasoline leaks.

• Your genotype is associated with an average sensitivity to benzene



Aspartame is an artificial sweetener that has been linked to behavioral, neurological and cognitive problems, increased blood sugar, thyroid issues, and certain types of cancer.

- Your genotype combinations may increase the sensitivity to aspartame
- Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia
- Artificial sweeteners in general increased waist circumference 500 percent while aspartame increased blood sugar in diabetes-prone mice
- Aspartame has been found to contribute to the formation of tumors in the CNS such as gliomas, medulloblastomas, and meningiomas, increased lymphoma and leukemia and, is an excitotoxin to brain neurons
- Aspartame in the body further metabolizes to formaldehyde, and rat studies found that formaldehyde (as a metabolite of aspartame) caused increased TSH levels and worsens the capacity of the gland leading to thyroid failure



Food dyes have been found to inhibit mitochondrial respiration: the ability of the powerhouse of your cells to convert nutrients to energy. They have also been found to especially affect those with ADHD.

- Your genotype combination is associated with a higher sensitivity to food dyes
- · Avoid foods and drinks that use food dyes when possible

## Pesticides, Herbicides and Heavy Metal Sensitivity AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY Glyphosate

Glyphosate is an herbicide that has been found to be highly toxic.

- Your genotype is associated with potentially more cellular damage from exposure to the herbicide glyphosate
- The highest glyphosate levels have been found in non-organic wheat and non-organic pulses like beans, lentils, and peas
- A meta-analysis of human epidemiological studies suggests a link between exposures to glyphosate and an increased risk for non-Hodgkin's lymphoma
- An association between glyphosate and thyroid disease comes from plots over time of the usage of glyphosate in the U.S. on corn and soy time-aligned with plots of the incidence rate of thyroid cancer in the U.S.
- Manganese deficiency and toxicity can occur simultaneously from glyphosate exposure due to a disruption in liver enzymes, causing transportation of manganese through the vagus nerve to the brainstem where excess manganese can lead to Parkinson's disease
- The gut bacterium Lactobacillus is negatively impacted by glyphosate and the depletion in associated with celiac disease
- Humic acid from Shilajit has been shown in vivo to reduce glyphosate concentration, inhibit the destructive effect of glyphosate on beneficial bacteria, and protect and repair against tight junction injury of the digestive system

## Pesticides, Herbicides and Heavy Metal Sensitivity AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY Organochlorines

Organochlorines are found in certain pesticides, PCBs and sucralose.

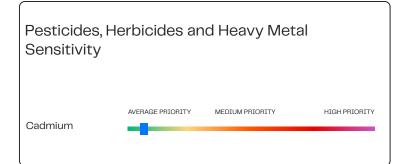
- Your genotype is associated with decreased protection against organochlorines
- Organochlorine pesticides and PCBs are found in fatty animal foods and contaminated seafood
- Sucralose also known as Splenda is an organochlorine that destroys gut flora like lactobacillus, which disturbs selenocysteine levels present in the catalytic center of enzymes that protect the thyroid from free radical damage
- Selenium and zinc have been found to be the most effective for positive DIO1 gene expression

Pesticides, Herbicides and Heavy Metal Sensitivity

Organophosphate Insecticides

AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY

Organophosphate Insecticides


PON1 plays a large role in removing pesticides and is also involved with supporting HDL function and LDL oxidation. Organophosphates are a class of insecticides, including parathion and chlorpyrifos, that were among the most widely used insecticides available until the 21st century.

 Your PON1 genotype is associated with improved PON1 levels and detoxification of organophosphate insecticides

# Pesticides, Herbicides and Heavy Metal Sensitivity Average PRIORITY MEDIUM PRIORITY HIGH PRIORITY Arsenic

Arsenic is a heavy metal that is damaging at high levels. The highest dietary sources of inorganic arsenic include contaminated groundwater and rice. A consistent and growing body of evidence has shown that people who metabolize arsenic poorly may be at two to four times the risk of developing certain cancers and other arsenic–related diseases than people who are better metabolizers

- Your genotype combination is associated with a reduced detoxification of arsenic
- The highest dietary sources of inorganic arsenic include contaminated groundwater and rice.
- Optimal selenium and folate intake have been found to improve arsenic detoxification and mitigate toxicity
- Chlorogenic acid a polyphenol highest in light roast coffee has been found to inhibit arsenic-induced neurotoxicity in mice
- Chlorogenic acid is also found in moringa tea, strawberries, cherries, bilberries, and wild blueberries



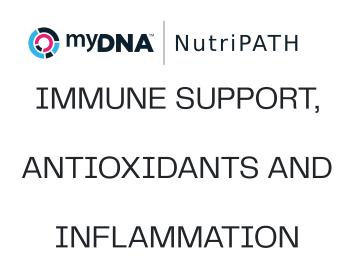
Chemical agriculture uses high amounts of synthetic organophosphates, creating a very high phosphorus content. Synthetic phosphorus concentrates the amounts of heavy metals, like cadmium in non-organic soils and food. Choosing organic produce is one of the best ways to avoid excess cadmium.

 Your genotype is associated with average detoxification of the heavy metal cadmium

# Pesticides, Herbicides and Heavy Metal Sensitivity AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY Mercury

Mercury is a neurotoxin linked to neurological and behavioral disorders including tremors, insomnia, memory loss, neuromuscular effects, headaches, and cognitive and motor dysfunction. Burning coal for power and heat is a major source of mercury exposure. Glutathione is responsible for protecting against and detoxifying heavy metals like mercury.

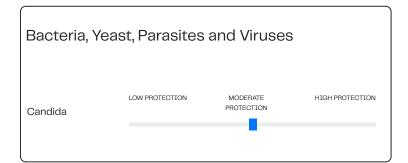
- Your glutathione genotypes are associated with reduced protection against mercury toxicity
- Mercury is found in many pharmaceutical drugs, dental amalgams, and large fish including swordfish, ahi tuna, and halibut
- Selenium blocks mercury uptake, folate decreases mercury levels, and magnesium and holy basil protect against mercury toxicity


Pesticides, Herbicides and Heavy Metal Sensitivity

AVERAGE PRIORITY MEDIUM PRIORITY HIGH PRIORITY

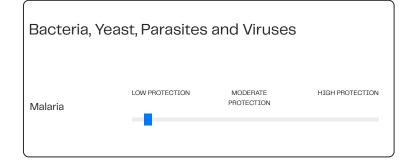
Lead

Lead-based paint, lead-based dust in older buildings, contaminated water, and air pollution are the major sources of lead. Exposure to lead over time may cause abdominal pain, constipation, depression, distraction, forgetfulness, irritability, and nausea.


- Your genotype is associated with improved detoxification of lead  $% \left( 1\right) =\left( 1\right) \left( 1\right)$ 



# Bacteria, Yeast, Parasites and Viruses AVERAGE PROTECTION HIGH PROTECTION


The inactive "non-secretor" genotype for FUT2 confers resistance to H. Pylori.H. Pylori is present in approximately 50% of the population in developed countries.

- You do not have the non-secretor genotype for FUT2, associated with an average susceptibility to H. Pylori
- H. Pylori inhibition has been demonstrated with alcohol extracts of the mushroom Lion's Mane



The inactive "non-secretor" genotype for FUT2 decreases resistance to Candida overgrowth.

 You have the secretor genotype for FUT2, giving you an average susceptibility to Candida overgrowth



Research has shown that MTHFR genotypes influence T-lymphocytes, natural killer cells, and protection against malaria.

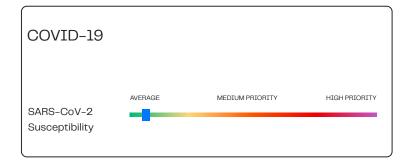
- Your genotype is associated with lower levels of thymidine, which may decrease lymphocyte replication and immune function in response to malaria
- The malaria parasite needs higher amounts of folate to survive and replicate
- For malaria-endemic regions, your genotype is associated with a higher susceptibility to malaria

Bacteria, Yeast, Parasites and Viruses

AVERAGE PROTECTION

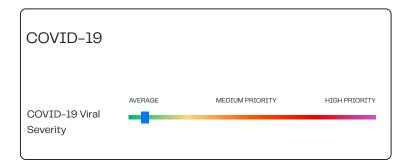
Norovirus

HIGH PROTECTION


The inactive "non-secretor" genotype for FUT2 confers resistance to the Norovirus.

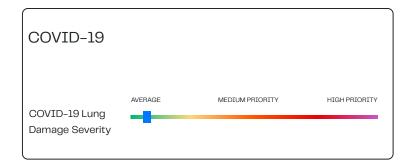
 You do not have the non-secretor genotype for FUT2, associated with an average susceptibility to the Norovirus

# Bacteria, Yeast, Parasites and Viruses AVERAGE MODERATE HIGH PROTECTION PROTECTION DNA Viruses


DNA viruses include HPV, Epstein Barre, herpes, and smallpox. Folate is a precursor to BH4 to produce nitric oxide. Nitric oxide acts as an antiviral that is more potent against DNA viruses.

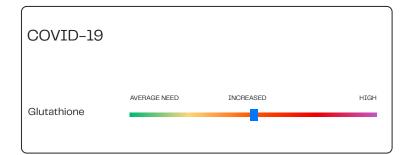
- Your genotype combination is associated with slightly lower BH4 levels with insufficent folate, lowering protection against DNA viruses
- Low BH4 affects the aggressiveness of DNA viruses
- To increase BH4, include foods high in folate, vitamin C, L-arginine, B6, magnesium, and selenium for healthy nitric oxide levels and DNA virus support
- BH4 is depleted by high blood sugar, high omega-6 intake, chronic stress, high levels of mercury, arsenic, lead and aluminum, aspartame, and oxidative stress




Genome-wide association studies have identified a region of chromosome 3p21.31 as the for conferring susceptibility to infection with LZTFL1 as the candidate gene. ApoE-e4, ACE2 and TMPRSS2 polymorphisms have been shown to be strongly associated with the susceptibility, severity, and clinical outcomes of COVID-19.

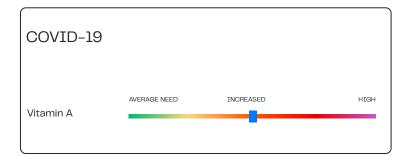
- Your genotype combination is associated with a reduced probability to SARS-CoV-2 infection
- Advanced age, obesity, and being male are considered the top risk factors for SARS-CoV-2 susceptibility, especially when combined with Type 2 diabetes, high blood pressure, and cardiovascular disease
- Research has shown that CBD, Chaga mushroom, birch bark and olive oil may stop SARS CoV-2 entry by helping block the "lock" for viral entry
- The flavonols kaempferol, quercetin, myricetin, fisetin and their derivatives were the most documented molecules with antiviral activities against SARS-CoV-2
- Propolis has antiviral activity and inhibitory effects on ACE2, TMPRSS2 and PAK1 signaling pathways used by SARS-CoV-2, while promoting immunoregulation of pro-inflammatory cytokines, and reducing the risk of cytokine storm syndrome




ACE2 (the receptor for SARS-CoV-2) is reduced in individuals that are carriers of ApoE4. Once the virus fuses with the cellular membranes, it takes control, shuts down more ACE2 receptors, closing the door behind it. Fewer ACE2 receptors lead to elevated angiotensin II levels, which increases the viral load. This leads to a more severe infection, NF-kb activation, lung damage, and viral replication.

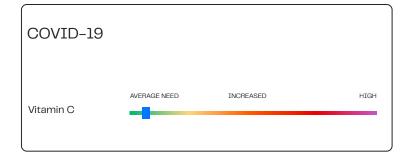
- An analysis of your ApoE genotype and numerous genes involved in the viral inflammatory pathways show an association with a reduced risk of viral severity
- The risk of viral severity can still be increased by existing health issues including Type 2 diabetes, obesity, high blood pressure, and cardiovascular disease
- In September 2020, Boston University found that SARS-CoV-2 is highjacking the NF-kB pathway and should be a target for suppressing viral aggressiveness
- In addition to vaccination, NF-Kb inhibitors can be both preventative for inflammation and successful with slowing viral aggressiveness
- These include vitamin C, vitamin D, zinc, selenium, magnesium, cordyceps mushrooms, resveratrol, triterpenoids (Chaga, reishi, olive oil, holy basil), caffeic acid (coffee, Chaga, elderberry), and anthocyanins (elderberry, goji berries, cacao)
- The dietary flavonols kaempferol, quercetin, myricetin, fisetin were the
  most documented molecules with antiviral activities against SARS-CoV2, and had a broad spectrum of biological activities that could reduce
  the severity of infection symptoms and enhance the immune response
- The strong association between air pollution exposure and COVID-19 mortality suggests that inhaled noxious particles influence COVID-19 outcomes




Scientists at the University of Oxford published results in November 2021 that variants in the LZTFL1 gene doubles the risk of lung failure and death from COVID-19. Approximately 60% of people with South Asian ancestry, 15% of people with European ancestry, 2% of people with African–Caribbean ancestry and 1.8% of people with East Asian ancestry carry the high-risk variant. Scientists found that the LZTFL1 gene high-risk variant affects the lungs, but does not have an impact on the immune system.

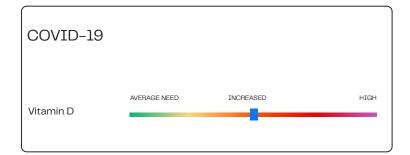
 Your genotype is not associated with an increased risk COVID-19 related lung damage severity




Glutathione is the master antioxidant system involved in oxidative stress, detoxification, and immunity. The functional capacity of immune cells and the ability to cope with oxidative stress has been proposed as one of the significant markers of health and longevity. In both animals and humans, those who reach exceptionally old age have immune markers the same as young adults.

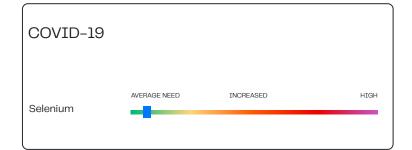
- Your genotype combination is associated with decreased baseline glutathione levels
- Glutathione decreases with age, and low levels of glutathione are associated with chronic exposure to chemical toxins, heavy metals and excess alcohol, immunocompromised conditions, and neurodegenerative disorders
- Glutathione has been found to increase by 20% with deep breathing practices like Tai Chi or yoga
- For exercise, a combination of aerobic exercise and circuit weight training produced the highest glutathione effect
- Selenium, glycine, cysteine, vitamin C, and cruciferous vegetables all improve glutathione levels
- Chicken or bone broth, herbs, and spices are some of the best dietary ways to maintain higher levels of glutathione
- Some of the all-stars include cinnamon, anise, sage, and thyme due to also containing the antiviral compound caffeic acid




Vitamin A and some other retinoids show important immunomodulatory properties, including the ability to increase the efficiency of actions of type 1 interferons, an important antiviral cytokine released by the innate immune system against viral infections. Coronaviruses similar to SARS-CoV-2 can suppress the host IFN-I-based antiviral response as part of their infection mechanism.

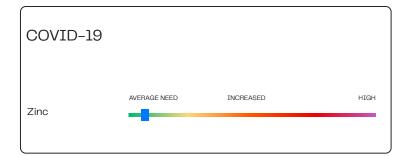
- Your genotype is associated with a 32% lower conversion rate of betacarotene to vitamin A, making it important to include more animal-based vitamin A to hit your daily target
- Vitamin A intake by country shows that Spain is the country with the lowest population meeting nutritional requirements for vitamin A, followed by Belgium and Finland
- Germany and Portugal show the best, and with the exception of Finland, countries with suboptimal Vitamin A status are correlated (although not significantly) with their COVID-19 incidence and mortality




Optimal status of vitamin C plays an important role in the proper working of the immune system.

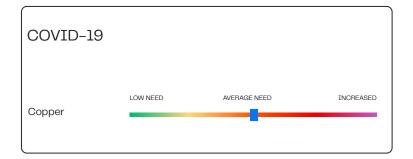
- · Your genotype is associated with average serum vitamin C levels
- Countries such as the UK, France, Netherlands, and Belgium do not reach optimal dietary intake of vitamin C
- Germany stands out for its level of vitamin C intake in comparison with other countries
- Despite suboptimal vitamin C intake correlating weakly with COVID-19 incidence, it correlates strongly with deaths percentage, which could suggest a positive effect to fight infection once the individual has already been infected with SARS-CoV-2




Vitamin D plays a key role in modulating the immune system, and suboptimal or deficient consumption of vitamin D is associated with various conditions related to a malfunction of the immune system and dysregulations in inflammatory status.

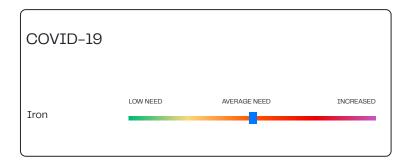
- Your genotype is associated with below average circulating levels of vitamin D
- Vitamin D intake is deficient in all countries studied with COVID severity, with Spain, France, and Italy as the countries with the lowest intake
- A meta-analysis of the studies appears to show that vitamin D is only useful for those who are clinically low (below 20 ng/ml), with moderate doses daily or weekly to raise levels being more effective than periodic large doses




Suboptimal or deficient levels of selenium are associated with decreased cytotoxicity of NK cells, decreased antibody titers, and impaired cellular immunity. Supplementation is commonly related to improvements in cellular immunity and an improved optimal immune response against viruses, including an inhibitory effect on the development of the poliovirus and influenza.

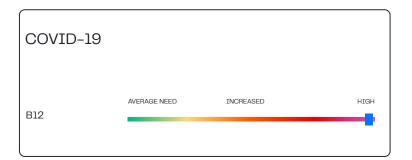
- Your genotype is associated with an average need for selenium
- Glutathione peroxidase 1 (GPX1) is a selenoenzyme with described antioxidant and antiviral properties that depends on nutritional selenium status
- Spain is at the top for meeting selenium requirements while Denmark is at the bottom
- The only two populations above the median of the countries analyzed included Finland and France, while the rest of the countries are below the general median




Optimal status of zinc is essential for the proper operation of the immune system and regulates NF-kb, where zinc deficiency in the setting of severe infection provokes a systemic increase in NF-kB activation. In vitro approaches have shown that zinc can inhibit SARS-CoV-1 replication.

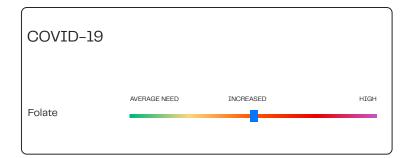
- · Your genotype is associated with an average serum zinc
- Scientific evidence supports that optimal zinc intake or supplementation should be considered part of the strategy to reduce COVID-19 effects, with early reports finding that 15-23mg a day show significant improvement in symptoms




Copper plays a key role in optimal performance of relevant components of the immune system, such as NK cells, macrophages, neutrophils, and monocytes. A deficiency has been related to less effective immune responses against infections, vulnerability for the heart and blood vessels to damage, and increased virulence. Excessive intake is also associated with negative immune function.

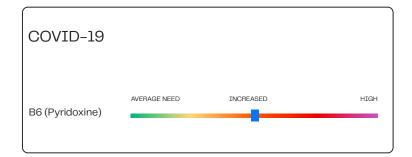
· Your genotype is associated with lower serum copper




Suboptimal levels of iron are associated with decreased killer efficiency of NK cells and lymphocytes as well as with compromised cytokine production. Both iron uptake disturbances and metabolism are implicated in virulence of airway hospital-acquired infection and chronic respiratory infections. In contrast, excessive iron levels can generate harmful cellular toxicity, so their serum levels must be well regulated.

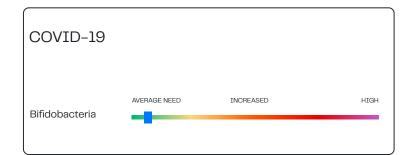
- Your genotype combination is associated with average serum iron levels
- A retrospective study based on 50 hospitalized Chinese subjects with confirmed COVID-19 demonstrated that 90% of these subjects had abnormally low serum iron concentrations
- Populations with lower iron status could be more prone to suffer a mild to severe (or critical) symptomatology of COVID-19 and the fact of monitoring patient iron levels has been proposed as a potential early marker to predict COVID-19 severity and mortality
- Iron levels should always be monitored by your practitioner




Sufficient vitamin B12 intake is essential for antibody production and a deficiency is related to a lower concentration of circulating lymphocytes and altered antibody-based responses. SARS CoV-2 infection is related to an aggravation of the cellular metabolism and the homocysteine pathway causing severe complications from COVID-19, and the correct supply of vitamin B12, folate and B6 may be crucial for COVID-19 patients.

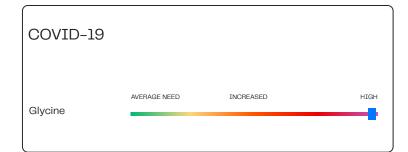
- Your genotype is associated with low B12 levels
- Some of the countries least affected by SARS-CoV-2 show the highest levels of vitamin B12 intake (Portugal and Finland)
- Some of the countries most affected by SARS-CoV-2 (Belgium and Spain) have intakes below the median




Folate is crucial for optimal Th-1 mediated immune response and proper antibody production. Suboptimal levels of folate may trigger imbalances in T and NK cell mediated immune responses and decrease the amount of antibody production.

- Your genotype combination is associated with a higher than average need for folate
- The correct intake of vitamin B6, folate and B12 in patients affected by COVID-19 has been proposed as part of the disease treatment, even by supplementation formulas, in an attempt to regulate the disruption of cellular metabolism of the homocysteine pathway caused by the SARS-CoV-2 infection




Vitamin B6 is essential for maintaining cytotoxic activity of NK cells, lymphocyte development, and B-cell antibody production. Suboptimal intake is associated with lower concentrations of circulating lymphocytes, impaired lymphocyte maturation, and decreased antibody-based responses.

- Your genotype is associated with low serum B6 levels, requiring a higher than average intake of B6
- The correct intake of vitamin B6, folate and B12 in patients affected by COVID-19 has been proposed as part of the disease treatment, even by supplementation formulas, in an attempt to regulate the disruption of cellular metabolism of the homocysteine pathway caused by the SARS-CoV-2 infection



Approximately 80% of your immune system is in your gut. The good bacteria bifidobacterium is highest in breast-fed infants and has been found to be lower in the higher-risk demographics for COVID-19 including those with diabetes, obesity, asthma and the elderly. Bifidobacteria populations have been found to vary based on the FUT2 genotype.

- Your genotype is associated with improved bifidobacteria levels in the gut, helping to protect against lower and upper respiratory infections
- Prebiotics found in foods like bananas, garlic, leeks, barley, asparagus, pistachios, onions, and polyphenol-rich foods – have been found in human trials to increase bifidobacteria levels



Glycine is one of the three major amino acids for glutathione production, protecting the body from oxidative damage during the immune response, and supporting T-cell proliferation.

- Your genotype is associated with low type 1 collagen production, increasing your glycine requirement
- Type I collage is a major structural protein in the lung and is stimulated during certain inflammatory reactions in the lung
- Collagen protein, bone, or chicken broth that gelatinizes, gelatin, meat with the skin, ribs, shanks, and drumsticks are all ways to increase dietary glycine
- Baobab is considered an exceptionally good source of plant-based glycine found in the hunter-gatherer Hazda diet

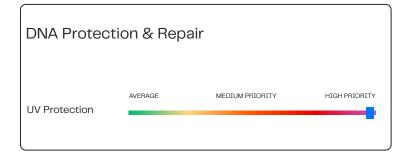




Glutathione is the master antioxidant system involved in oxidative stress, detoxification, and immunity. Glutathione status parallels telomerase activity, an important indicator of lifespan.

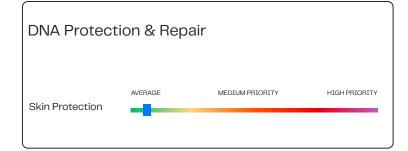
- Your genotype combinations are associated with slightly decreased baseline glutathione levels
- Glutathione decreases with age, and low levels of glutathione are associated with chronic exposure to chemical toxins, heavy metals and excess alcohol, immunocompromised conditions, and neurodegenerative disorders
- Glutathione has been found to increase by 20% with deep breathing practices like Tai Chi or yoga
- For exercise, a combination of aerobic exercise and circuit weight training produced the highest glutathione effect
- Selenium, glycine, cysteine, vitamin C, and cruciferous vegetables all improve glutathione levels
- Chicken or bone broth, herbs, and spices are some of the best dietary ways to maintain higher levels of glutathione
- Some of the all-stars include cinnamon, anise, sage, and thyme due to also containing the antiviral compound caffeic acid




CAT makes an enzyme called catalase, which helps reduce oxidative stress. CAT is present in all aerobic cells while research has found the highest correlation to prostate, breast, liver, and blood health.

· Your genotype is associated with improved catalase levels




The SOD2 gene is responsible for superoxide dismutase levels, an important protector of the mitochondria, the powerhouse of the cell.

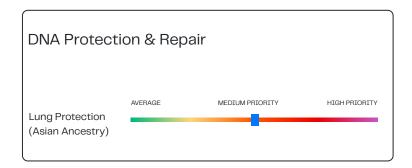
- Your genotype is associated with slightly reduced mitochondrial protection
- Manganese, boron, vitamin A, C, E, omega-3 fatty acids, CoQ10, lutein, lycopene, milk thistle, cordyceps, holy basil, reishi and cryotherapy all increase mitochondrial protection



One hypothesis for variants in MTHFR 677 is that they were selected based on higher folate intake and UV exposure, both common in Mediterranean climates. What happens in the body when MTHFR enzymatic function is reduced is that thymidine production increases. Thymidine enhances the repair of UV-induced DNA damage to help quickly repair sun damage.

- Your MTHFR genotype is associated with reduced UV protection from the sun
- To improve UV protection, increase your intake of folate-rich greens, blackberries, wild salmon, cacao powder, schisandra, reishi, dill and dried parsley




GPX1 activity is considered to be the most important antioxidant enzyme defense mechanism in the skin.

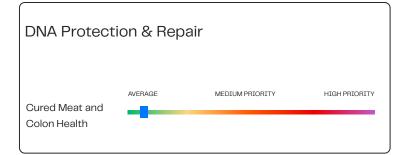
 Your genotype is associated with improved antioxidant protection for the skin



Variants in the GSTP1 gene have been associated with lower antioxidant support in the lungs when exposed to environmental pollution.

 Your genotype is associated with increased lung protection against environmental pollutants




Glutathione levels and pro-inflammatory cytokines, such as TNF-a, are found in airways and environmental pollutants are known to induce inflammatory responses.

- Your genotype combination is associated with reduced lung protection against environmental pollutants
- It is recommended to increase your intake of cruciferous vegetables, vitamin C, vitamin E, vitamin A, milk thistle, resveratrol, curcumin, green tea, and white tea to target the GSTM1 gene
- Additional support includes cold water immersion, breathing exercises, cordyceps, and ginger to target the TNFA gene



The MLH1 gene codes for a DNA repair enzyme linked to colon health.

 Your genotype is associated with improved DNA protection for colon health



A large-scale genome-wide analysis of over 18,000 people from the U.S., Canada, Australia and Europe found that variants in GATA3 were associated with an increased risk of colon cancer for those eating processed meat compared to those with the normal genotype.

 Your genotype is not associated with an increased risk of colon cancer from cured meat consumption



Blue light is a high-energy or short-wavelength visible light from your phone and computer that induces inflammation and retinal diseases such as age-related macular degeneration and retinitis pigmentosa.

- Your genotype is associated with higher requirements for foods high in lutein, zeaxanthin, and anthocyanins for eye health
- A meta-analysis found that the rates of myopia (nearsightedness) will increase 140% by 2050 due to our increased time in front of a screen
- Research has found that bilberry and lingonberry exert protective effects against blue LED light-induced retinal photoreceptor cell damage due to their polyphenol content
- Increase your dietary intake of dark purple berries, dark leafy greens, summer squash, green peas, broccoli and Brussels sprouts



Up to 60 percent of those with a thyroid disorder are unaware of their condition. The cause is considered largely unknown and occurs 10 times more in women than in men. Hashimoto's disease runs in the family and 70%–80% of susceptibility to autoimmune thyroid disease is based on genetics.

- Your genotype combination is associated with reduced thyroid protection and a slightly increased risk of Hashimoto's disease
- · Autoimmune thyroid disease is associated with celiac disease
- A deficiency in selenium is associated with celiac disease and thyroid disease, and plays a significant role in thyroid hormone synthesis, secretion and metabolism
- Sucralose and glyphosate destroy gut flora like lactobacillus, which disturbs selenocysteine levels present in the catalytic center of enzymes that protect the thyroid from free radical damage
- The artificial sweetener aspartame in the body further metabolizes to formaldehyde, and rat studies found that formaldehyde (as a metabolite of aspartame) caused increased TSH levels and worsens the capacity of the gland leading to thyroid failure



Multiple genes are linked to DNA protection for pancreatic health.

 Your genotype combination is associated with increased DNA protection for pancreatic health



Certain gene combinations have been found to decrease the detoxification ability of certain toxins found to be carcinogenic for the bladder.

- Your genotype is associated with decreased DNA protection for bladder health
- Avoid tobacco smoke, commercial hair dyes, working in industrial and manufacturing plants, charred meat, and diesel exhaust
- Increase your cruciferous vegetables, carotenoid, and vitamin C intake

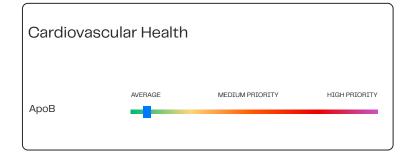




ApoE is connected to HDL and LDL levels, while PON1 is involved with supporting HDL function and LDL oxidation, an important mechanism in atherosclerosis and heart disease.

 Your genotype combination is associated with a higher likelihood of good HDL levels and a lower likelihood of higher levels of LDL, oxidized LDL, and total cholesterol




Subjects with variants in PPAR-alpha have been found to have a larger waist circumference and a higher proportion of small, dense LDL particle size.

 Your genotype is not associated with a higher proportion of small, dense LDL particle size



Variants in the FADS1 SNP (rs174546) are associated with elevated triglyceride levels.

- · Your genotype is associated with elevated triglycerides
- Numerous studies have found that omega-3 fatty acids administered as fish oil supplements lowers plasma triglyceride levels by 25% to 34%



ApoB is a protein that is involved in the metabolism of lipids and is the main protein constituent of lipoproteins. High levels of ApoB, especially with the higher LDL particle concentrations, are the primary driver of arterial plaque. The PPAR-alpha polymorphism has been associated with ApoB in many populations such as Caucasians, Indians, and African-Americans.

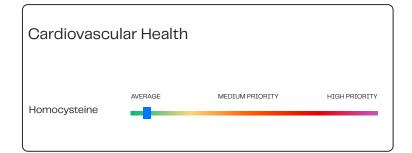
• Your genotype is not associated with elevated ApoB levels



Lp(a ) is a sticky form of LDL that appears to affect plaque growth, LDL particle size and increase the risk of plaque rupture and blood clotting.

• Your genotype is not associated with elevated Lp(a) levels




The risk of heart attacks and cardiovascular disease conferred by the 9p21 gene appears to be modified by a prudent diet high in raw vegetables and fruits for South Asian, Latin American, Arab, Chinese and European populations for variants in rs4977574.

 You have a higher than average requirement for raw fruits and vegetables to maintain a healthy heart



The uncoupling of nitric oxide has been linked to play an essential role in cardiovascular pathologies including dilated cardiomyopathy, ischemia-reperfusion injury, endothelial dysfunction, atherosclerosis, and hypertension.

- Your genotype combinations are associated with a higher than average need for folate to produce adequate BH4, the precursor to nitric oxide
- BH4 is depleted by high blood sugar, high omega-6 intake, chronic stress, high levels of mercury, arsenic, lead and aluminum, aspartame, and oxidative stress
- Other strategies to increase BH4 include vitamin C, L-arginine, B6, magnesium, and selenium



Homocysteine is a non-protein amino acid that is produced from methionine, can be recycled back into methionine and converted into cysteine in the methylation cycle. High homocysteine levels have been connected to depression, blood clots, inflammation, macular degeneration, dementia, and cancer.

 You have an average need for folate to maintain healthy homocysteine levels



Age-related increases in blood pressure have been observed in almost every population, except among hunter-gatherers and farmers. High physical activity, low-stress levels, and potentially protective diets high in fruits, vegetables, potassium, lower in calories, salt, and alcohol are the major contributing factors to the stark differences.

- Your genotype combination is associated with slightly above normal blood pressure levels
- Closer proximity to the equator, higher temperatures, ultraviolet radiation, summertime, and longer hours of sunlight have been associated with lower blood pressure
- Distances further from the equator with fewer hours of sunlight and winter has been associated with higher blood pressure levels
- While many genes are connected to blood pressure, these genes respond to keeping total fat intake below 37%, and increasing bilberry, grapes, raw garlic, cinnamon, and jasmine



Deep vein thrombosis is a condition that occurs when a blood clot forms in a vein deep inside a part of the body and is most common for those over 60. Variants in F5 increase the risk of deep vein thrombosis.

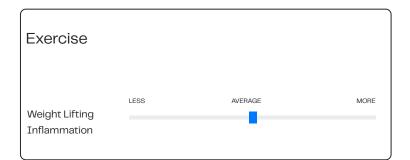
- Your genotype is associated with an increased risk of deep vein thrombosis
- · Oral contraceptives and the Nuvaring increase the risk of clots
- · High homocysteine increases the risk of clots
- Vitamin E has been found to reduce the risk posed by Factor V Leiden, and omega-3's act as a natural anticoagulant



Variants in the ABCG2 gene have been associated with elevated uric acid levels and an increased risk of gout in Asians, Europeans, African Americans, Mexican Americans, and American Indians. Epidemiological studies have shown that uric levels are positively correlated with gout, hypertension, atherosclerosis, atrial fibrillation, and heart failure.

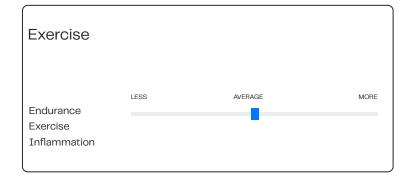
- · Your genotype is associated with increased uric acid levels
- The association with your genotype and elevated uric acid levels is significantly stronger in men, postmenopausal women, and hormone therapy users
- Your genotype increases your sensitivity to sugar, alcohol intake, highpurine foods like liver, and dehydration with the development of gout
- Avoid refined sugar, increase water intake, parsley, quercetin, kaempferol, olive oil and vitamin C




A homozygous HFE C282Y may lead to an iron overload due to increased iron absorption and disrupted metabolism. People who are homozygous for the HFE C282Y gene mutation comprise 85 to 90 percent of those with hemochromatosis in whites of western European descent.

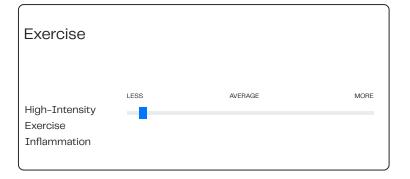
 Your wild-type HFE genotype is associated with a reduced likelihood of genetically linked hemochromatosis




ACTN3 is currently the most promising gene for predicting the likelihood of becoming an Olympic level sprint and power athlete in males and females. The RR (CC) genotype expresses the ACTN3 protein found in Type II muscle fibers, which produces explosive and powerful contractions.

- You have the RR genotype for the ACTN3 gene associated with more Type II fast-twitch muscle fibers and power
- · More powerful muscle contractions
- · Higher muscle hypertrophy response
- · Faster recovery




Weight lifting leads to a variation in muscle inflammatory markers based on genetics and intensity.

- Your genotype combination is associated with average levels of muscle inflammation (creatine kinase) for weight lifting
- To accelerate recovery, ice baths, whey protein, American ginseng, curcumin, vitamin C, and collagen protein have all been found to attenuate creatine kinase levels



Endurance training leads to a variation in creatine kinase levels based on genetics.

 Your genotype combination is associated with average levels of muscle inflammation (creatine kinase) for endurance exercise



High-intensity exercise is defined as 70% to 85% of your maximum heart rate, and inflammation variation has been associated with the SOD2 gene.

 Your SOD2 genotype is associated with less muscle inflammation in response to high-intensity exercise



The COL1A1 gene is associated with ACL and shoulder injury risk.

- Your COL1A1 genotype is associated with an increased need for dietary collagen to prevent ACL and shoulder injuries
- Vitamin C, zinc, copper, glycine, proline, lysine, and B6 are all precursors to collagen production



The ACTN3 gene is linked to increased or decreased risk of ankle and hamstring injuries.

 Your ACTN3 genotype is associated with a lower risk of ankle and hamstring injuries due a higher amount of fast-twitch muscle fiber composition



The ACTN3 gene is associated with a lower or higher adaptation rate to cold endurance.

 You have the ACTN3 RR genotype, associated with a lower adaptation rate to cold endurance




VO2 max is measurement for oxygen capacity and endurance training. The most recent research has shown that 97 genes predicted VO2 max trainability. The phenotype is dependent on several of these variants combined together, which may contribute to approximately 50% of an individual's VO2 max trainability.

- Research has shown that your genotypes may be associated with an average VO2 max training response
- Training in the cold, ashwagandha and eluethero root have been found to help increase VO2 max



The CYP1A2 gene is associated with caffeine response for improving or decreasing exercise performance.

 Caffeine was not found to improve or decrease exercise performance for your CYP1A2 genotype



The CYP1A2 gene is associated with caffeine response for improving or decreasing exercise performance.

 Caffeine was not found to improve or decrease exercise performance for your CYP1A2 genotype

# MY HEALTH REPORT: STRENGTHS

This section is a thorough overview of your individual gene function across the entire analysis in just a few pages. If you are looking for a brief summary of the most important parts of your report without doing a deep dive into the genotype tables and clinical research sections, this is the place to start. Be proud of your inherent genetic strengths!

# **NUTRIENT METABOLISM & DIGESTION**

- Prebiotics, Probiotics and B12-FUT2 The GG FUT2 genotype in European, African, and Indian populations is associated with improved bifidobacteria populations in the gut compared to the AA genotype, increasing immune function against respiratory infections.
- **Vitamin C-SLC23A1** Your genotype is associated with improved whole-body vitamin C homeostasis through dietary absorption and renal reabsorption.
- Adiponectin-ADIPOQ Your genotype is associated with a higher probability of normal adiponectin levels, linked to improved bodyweight, insulin, and glucose levels.
- Iron Your genotype is associated with a lower risk of iron overload for the HFE C282Y gene.
- **Saturated Fat-PPAR-alpha** You have the wild-type genotype that is associated with improved saturated fat metabolism and ketone body production during fasting. Assess your other fat metabolism genes for a more complete assessment.
- **Ghrelin and Appetite-FTO** Your genotype is associated with normal ghrelin levels (hunger hormone), decreasing the risk for overeating and abdominal weight gain.
- Saturated Fat-APOA2 Your genotype is associated with a reduced likelihood of saturated fats causing weight gain.
- **Carbohydrates-TCF7L2** Your genotype is associated with an improved insulin response for grain-based carbohydrates.
- **Lactose** You have the homozygous AA genotype that is associated with a lower probability of lactose intolerance.
- Histamines-APB1 You have the wild-type genotype that is associated with improved histamine breakdown in the digestive tract.
- Ethanol Metabolism-ALDH2 Your genotype is less likely to experience facial flushing from alcohol due to improved
  acetaldehyde metabolism.

# **METHYLATION**

- Folate-MTHFR 677 You have the wild-type genotype common in northern climates. This genotype is associated with lower folate requirements unless you have the MTHFR 1298 homozygous genotype. The wild-type MTHFR 677 genotype assists with healthy homocysteine levels.
- **Folate-DHFR** Your genotype is associated with an improved breakdown of synthetic folic acid at the beginning of the folate cycle. However, variants in MTHFR 677 can also affect folic acid metabolism.
- **B12-MTRR** Your genotype is associated with improved gene function, assisting B12 and homocysteine metabolism.
- **B12-TCN2** Your genotype is associated with improved B12 transportation.
- \_ Arsenic-CBS Your genotypes are associated with improved arsenic metabolism and detoxification for the CBS genes.

# HORMONE SUPPORT

- Sex Hormone Binding Globulin If you are female, your genotype is associated with helping maintain normal estrogen and testosterone levels. Other epigenetic factors like obesity, fatty liver, and Type 2 diabetes should be considered when assessing SHBG levels.
- **Testosterone-Men** If you are male, your genotype is associated with improved total and free testosterone levels for the SHBG rs6258 gene.
- Thyroid-DI02 Your genotype is associated with average T3 and T4 thyroid function in the brain for the DI02 gene. However, other factors can affect T3 and T4 levels including thyroid surgeries.
- **Estrogen Metabolism-CYP1A1** Your CYP1A1 wild-type genotype is improved for the beginning phase of estrogen metabolism. Please review all genes involved in estrogen metabolism for a complete picture of the process.
- **Estrobolome-FUT2** Your wild-type genotype is associated with improved bifidobacteria gut bacteria, assisting the gut phase of estrogen detoxification.

# MENTAL HEALTH, NEUROTRANSMITTERS & COGNITIVE PERFORMANCE

- Serotonin Receptor-Memory You have the wild-type genotype that is associated with an improved episodic memory,
  which is the ability to recall details regarding personal experiences, names of people, specific events, and what exactly
  occurred.
- **Dopamine, Adrenaline and Estrogen-COMT** The heterozygous genotype for COMT V158M and H62H scored significantly higher on insight problem-solving tasks and had a greater ability for social facilitation and cooperativeness.
- **Dopamine Receptors-ANKK1** Your genotype is associated with an improved density of dopamine receptors for healthy dopamine levels.
- Histamines and Migraines-DAO The wild-type CC genotype for DAO rs1049793 is associated with a reduced risk of histamine-induced migraine headaches.
- **Glutamate Transport-SLC17A7** Your genotype is associated with improved recovery from head injuries. However, your APOE and BDNF genotype should also be assessed because these all have a cumulative impact.

# IMMUNE SUPPORT, ANTIOXIDANTS AND INFLAMMATION

- **Cell Protection-CAT** Your genotype is associated with improved catalase levels, mitigating damage to your cells.
- Glutathione-GSTM1 While the GSTM1 null genotype has been associated with a greater sensitivity to benzo(a)pyrene, there is also a benefit to this genotype. The benefit is that the null genotype may retain a higher level of isothiocyanates, the anti-cancer compounds found in cruciferous vegetables that may also be required in higher amounts for this genotype.
- Glutathione-GSTP1 You have the wild-type AA genotype for GSTP1 rs1695 that is associated with improved glutathione antioxidant protection for breast, lung, or prostate health; however, supplemental vitamin E as alphatocopherol may be inflammatory. Your GSTP1 rs1138272 genotype may increase or decrease this effect.
- Heavy Metals-GSTP1 You have the wild-type CC genotype for GSTP1 rs1138272 that is associated with improved glutathione antioxidant protection against heavy metals, pesticides, and air pollution for colon, prostate, lung, throat, and fertility health. Your GSTP1 rs1695 genotype may increase or decrease this effect.
- **Glutathione-GPX1** Your genotype is associated with improved selenium status and glutathione peroxidase to boost DNA protection, heat stress tolerance, skin protection and longevity.
- Glutathione-CTH Your genotype is associated with improved gene function, leading to adequate cysteine for glutathione production.
- Nitric Oxide-NOS1 Your genotype is associated with an average required intake of red, yellow, and orange vegetables to modulate the inflammatory process for NOS1.
- Nitric Oxide-NOS2 Your NOS2A gene is functioning optimally for reducing the probability of age-related macular degeneration from cigarette smoke.
- **Eye Health-ARMS2** Your genotype is associated with a lower sensitivity to the negative effects of smoking on eye health.

# **DETOXIFICATION**

- **Liver Enzyme-CYP1A1** Your genotype is associated with improved detoxification of benzopyrene from cigarette smoke and will assist the function of your GSTM1 gene.
- **Liver Enzyme-THC and CYP2C9** You have the wild-type genotype that is associated with improved metabolism of THC, the active psychoactive compound in cannabis.
- **Liver Enzyme-CYP2E1** Your genotype is associated with improved metabolism of benzene and acrylamide for colon health.
- **Liver Enzyme-CYP3A4** Your genotype is associated with normal metabolism of certain drugs that use this enzyme. We recommend further pharmacogenomic testing with your doctor for more information regarding CYP3A4.
- **Vitamin K2-VOKRC1\*2** Your genotype is associated with normal vitamin K2 levels unless gut function is compromised from antibiotics, SIBO, leaky gut syndrome, IBS, IBD, Crohn's disease or parasites.
- \_ Statins-COQ2 Your genotype is associated with a lower likelihood of statin drug-induced muscle pain.

# DNA DAMAGE, PROTECTION AND REPAIR

- DNA Repair-ATM Your genotype is associated with improved DNA repair function for pancreatic health.
- **Prostate-ESR2** For men with the ESR2 rs2987983 wild-type AA genotype, your genotype is associated with an improvement in tumor suppressor gene function for prostate health and lowering phytoestrogen requirements. All genes related to prostate health should be analyzed to better determine the cumulative value for prostate protection.
- DNA Repair-MDM2 Your MDM2 genotype is associated with improved DNA repair for sun damage if you are female.
- **DNA Repair-MLH1** Your genotype is associated with improved DNA repair for colon, endometrium, lung, and brain protection.
- **Processed Meat and Colon Cancer-GATA3** You have the wild-type genotype that is associated with a reduced risk of processed meat consumption and colon cancer.
- Longevity-SIRT1 Your SIRT1 genotype is associated with normal SIRT1 activity for longevity. While not a weakness, you may want to increase SIRT1 activity epigenetically to increase the probability of longevity, especially if you have the APOE-e4 allele. A sedentary lifestyle, aging, poor diet, and obesity lowers SIRT1 activity. Exercise, fasting, 7-8 hours of sleep per night, saunas, polyphenols, vitamin D, omega-3 fatty acids, resveratrol, magnesium, and melatonin have all been found to increase SIRT1 activity.

# CARDIOVASCULAR HEALTH & EXERCISE

- Power and Recovery-ACTN3 You have the RR genotype, associated with more Type II fast-twitch muscle fibers, an
  enhanced response to strength training and muscle hypertrophy, potential improved protection from eccentric traininginduced muscle damage, improved training adaptation, reduced risk of sports injury, and reduced frailty risk later in life.
- **Lung Cytokines-TNFA** If you have Asian ancestry, your genotype is associated with improved TNF-a gene function for lower inflammation in the lungs.
- Pesticides, HDL and LDL-PON1 You have the wild-type genotype associated with improved PON1 activity for pesticide detoxification and protection against LDL oxidation.
- LDL-LPA Your genotype is associated with healthy Lp(a) levels, a sticky form of LDL that affects plaque levels.
- **Potassium and Magnesium-ADD1** If you have Asian ancestry, your wild-type genotype is associated with a reduced risk of a higher sodium intake causing elevated blood pressure.
- **Blood Pressure-AGTR1** You have the wild-type genotype, associated with a lower probability for high blood pressure, elevated triglycerides, elevated ApoB, and NAFLD from excess dietary fat and carbohydrate intake.
- **Blood Pressure-ACE2** Your genotype is associated with higher baseline ACE2, improving the balance between ACE1 and ACE2 for blood pressure, and potentially lowering the risk of COVID-19 severity. Other dietary habits and health issues could affect this result.

# MY HEALTH REPORT: WEAKNESSES

Genes are not your destiny - they are your blueprint. Please understand that these weaknesses can be turned into strengths based on the personalized recommendations given below. Making strategic changes to diet, environment, stressors, and even relationships can have a profound effect on optimizing gene function. Aim to turn every weakness into a strength by giving attention to the proactive, customized dietary and lifestyle modification recommendations in this section!

# **NUTRIENT METABOLISM & DIGESTION**

- Beta Carotene to Vitamin A Conversion Rate-BCMO1 Your BCMO1 genotype combination is associated with a reduced conversion rate of plant-based beta carotene (squash, sweet potatoes, carrots) to vitamin A. This increases your need for foods higher in vitamin A like eggs, cod liver oil, wild salmon oil and organ meats for skin, digestion, healthy eyes, lungs, and immunity.
- ALA to EPA and DHA Conversion-FADS2 Your genotype is associated with a reduced conversion of plant-based omega-3 ALA (walnuts, flax seeds, and pumpkin seeds) to EPA and DHA. Increased EPA and DHA intake may be needed.
- **Prebiotics, Probiotics and B12-FUT2** The rs601338 FUT2 GG genotype has been associated with lower B12 levels in European, Indian and African populations.
- **B6-NBPF3** You are more likely to have low B6 levels due to variants in the NBPF3 gene, increasing the sensitivity to medications that deplete B6 (oral contraceptives, antibiotics, ACE inhibitors, antacids, proton pump inhibitors and more). You need to focus on increasing foods high in B6 like wild salmon, pistachios, avocados and potatoes.
- **Fat Metabolism-ACSL1** Your genotype is associated with higher fasting glucose levels from a higher saturated fat intake. If your fasting glucose is high and you have variants in the other fat metabolism genes, fatty red meat and dairy should be reduced and more focus should be on monounsaturated and polyunsaturated fats.
- **Uric Acid-ABCG2** Your genotype is associated with a higher probability of chronically elevated uric acid levels, increasing the sensitivity to sugar consumption and dehydration with the development of gout. Avoid refined sugar, increase water intake, flavonoids, olive oil, and vitamin C.
- **Stress and IBS-ADRB2** You have the ADRB2 heterozygous CG genotype that is associated with a higher percentage of digestive disorders, IBS, and anxiety from elevated adrenaline levels. If you experience any of these, you may benefit from a deep breathing practice, meditation, yoga, vitamin C, and magnesium to modulate adrenaline levels.

# **METHYLATION**

- **Folate-MTHFR 677** You have the wild-type genotype that is associated with reduced protection against UV-induced DNA damage from the sun due to lower thymidine production.
- **Folate-MTHFR 1298** You have the homozygous genotype that is associated with an estimated 40% reduction in enzymatic function. More focus should be on folate, vitamin C, L-arginine, B6, magnesium, holy basil, selenium, royal jelly and deep breathing techniques to improve gene function.
- **Folate-MTHFD1 G1958A** Your genotype is associated with an increased need for folinic acid, the second most common type of folate after methylfolate.
- **B12, B2 and Zinc-MTR** You may have an increased sensitivity to excess alcohol, excess sugar, anesthesia, the birth control pill and heavy metals due to a homozygous MTR genotype.
- **Choline-PEMT** Your genotype is associated with an increased need for dietary choline for liver health, normal homocysteine levels, breast health for women, and a healthy pregnancy for women.
- **B6-CBS** Your genotype is associated with reduced CBS gene function for homocysteine levels, gut repair, and brain health, increasing your need for B6.

## HORMONE SUPPORT

- **Thyroid-DI01** The homozygous AA genotype for the DI01 gene is associated with higher T4 levels and a sensitivity to organochlorine pesticides and PCBs. You may have a higher need for selenium and zinc if you have elevated T4 and low T3 levels.
- **Vitamin D-CYP2R1** Your genotype is associated with low circulating vitamin D levels that can affect immunity, breast health in women, and testosterone levels in men. Check your vitamin D levels and make sure you are in range.
- **Estrogen Metabolism-CYP2C19** Individuals with the CC genotype for CYP2C19\*17 are considered the normal metabolizer phenotype, which may lack the estrogen metabolism benefits of the ultra-rapid metabolizer phenotype. Please review all genes involved in estrogen metabolism for a complete picture of the process.
- **Estrogen Metabolism-CYP1A2** For men and women with the CYP1A2 AC intermediate caffeine metabolism genotype, coffee intake was found to be less protective for breast and prostate health compared to the AA fast metabolizer.
- Estrogen Metabolism-COMT For estrogen metabolism and detoxification, those with the intermediate AG COMT V158M genotype may have an increase in harmful estrogen metabolites that can cause DNA damage. To reduce the risk of these metabolites, you should avoid xenoestrogens, manage stress levels, maintain gut health, increase magnesium intake, and consume green tea polyphenols.
- **MTNR1B-Melatonin** You have the GG MTNR1B genotype, which is associated with delayed melatonin release, a longer duration of morning melatonin levels, and less insulin release during late night and early morning feeding. It is recommended to eat dinner early, avoid late night snacking and consume breakfast later in the morning for better glycemic control.

# MENTAL HEALTH, NEUROTRANSMITTERS & COGNITIVE PERFORMANCE

- Serotonin Receptor-Stress The 5-HT2A heterozygous genotype may be more impactful in females who also have variants in the BDNF gene. Chronic stress may increase the susceptibility to anxiety, depression, OCD, and IBS for these genotypes. If you experience higher perceived stress and chronic stress levels, you may require more aerobic exercise, cognitive behavioral therapy, mindfulness training, meditation, yoga, singing, prebiotics, lactobacillus helveticus, bifidobacterium longum, tryptophan, green or black tea, and B-vitamins.
- Dopamine, Adrenaline and Estrogen-COMT The heterozygous AG COMT V158M genotype is associated with a slower breakdown of dopamine, adrenaline, and estrogen, creating higher circulating levels in response to stress due to variants in the COMT genes. This may increase your need for magnesium, vitamin C, strength training, and sprints to reduce stress levels.
- Histamines and Hyperactivity-HNMT You have the AA genotype that is associated with increased hyperactivity in response to food dyes and sodium benzoate. Excess histamine is lowered by vitamin C, choline, folate, magnesium, chamomile, basil, stinging nettle, echinacea, fennel, ginger and wild oregano.
- •= Brain Health-PEMT Your genotype is associated with an increased need for dietary choline and daily walks for memory, anxiety, and REM sleep.
- **Glutamate-BDNF** Your genotype is associated with lower BDNF levels that can affect mood, head injury recovery, memory, and blood sugar levels. Research has shown that running, DHA, lithium, green tea, milk thistle, acetylcholine, sunlight, saunas, hot baths, the probiotic Bifidobacterium longum, intermittent fasting, turmeric, and optimal estrogen levels (women) all improve BDNF levels.
- **Cholesterol-APOE** You have the ApoE e3/e4 genotype. While not as impactful as the e4/e4 genotype, research has found this genotype to be associated with increased plasma cholesterol, lower antioxidant protection, and a reduced ability to repair synapses and protect neurons. Read more under the Macronutrient Metabolism section under My Health Report.

# IMMUNE SUPPORT, ANTIOXIDANTS AND INFLAMMATION

- **Cell Protection-SOD2** You have the heterozygous AG genotype for SOD2. Your mitochondria (powerhouse of the cell) may have a higher sensitivity to glyphosate, fluoridated water, chronic stress, poor sleep, and shallow breathing. Increase foods that contain manganese, lycopene, and vitamin C, milk thistle, mushrooms like reishi and cordyceps, and exercise that encourages deep breathing.
- Glutathione-GSTM1 You have the null genotype that is associated with a higher sensitivity to benzo(a)pyrene from the burning of wood or trash, tobacco smoke, asphalt, coal, diesel exhaust, charred meat, and gas cooking. If you have the GSTM1 null and NAT2 slow acetylator combination, that may affect lung, breast, bladder, skin, colon, and kidney health. It is recommended to increase your intake of cruciferous vegetables, vitamin C, vitamin E, vitamin A, milk thistle, resveratrol, curcumin, green tea, and white tea.
- **Eye Health-CFH** Your genotype is associated with an increased need for lutein, zeaxanthin, bilberry, lingonberry, vitamin C, and vitamin E for healthy eyes.

# **DETOXIFICATION**

- **Liver Enzyme-CYP1A2** You have the AC genotype for CYP1A2 that is associated with an increased sensitivity to heterocyclic amines (fried meat) when combined with the homozygous GSTM1 null genotype or slow acetylator NAT2 genotype. Marinades, unfiltered fermented drinks (Kombucha, beer, wine), cruciferous vegetables, parsley, and spinach have all been found to reduce the carcinogenic effect of heterocyclic amines.
- **Liver Enzyme-CYP1B1** You have the CG genotype for CYP1B1 that is associated with a slightly reduced detoxification of polycyclic aromatic hydrocarbons (highest in vegetable oils), oral contraceptives, cigarette smoke, an increased sensitivity to excessive sun exposure, and high-dose biotin supplementation. You can assist CYP1B1 with seaweed, celery, berries, rooibos tea, red wine, and dark roast coffee.
- **Liver Enzyme-CYP2D6** Your genotype is associated with reduced clearance of certain drugs associated with CYP2D6 rs1065852. However, more CYP2D6 SNPs are needed for a complete panel. Please talk to your doctor about further testing for CYP2D6 and drug metabolism.
- Aromatic Amines-NAT2 You have the slow acetylator genotype for the NAT2 gene. This is associated with reduced detoxification of aromatic amines found in tobacco smoke, commercial hair dyes, industrial and manufacturing plants, charred meat, and diesel exhaust for bladder, prostate and breast health. Cruciferous vegetables, carotenoids, and vitamin C all assist NAT2 detoxification.

# DNA DAMAGE, PROTECTION AND REPAIR

• **DNA Repair-TP53** - You have the homozygous CC genotype that may be advantageous for fertility in cold climates, but also increases the need for selenium, zinc, vitamin C, reishi, and niacin for DNA repair against chemical toxicity to the thyroid gland and skin.

## CARDIOVASCULAR HEALTH & EXERCISE

- = Power and Recovery-ACTN3 The RR genotype may be less beneficial for cold adaptation.
- **VO2 Max-PPARGC1A** Your genotype is associated with a higher need for more strategies to increase oxygen capacity for aerobic exercise, including a structured endurance program, cold exposure, and adaptogens. Your genotype in the GSTP1 rs1695 gene can also influence this result.
- Muscle Recovery-IL6 You have the CC genotype that is associated with higher levels of creatine kinase a marker of muscle damage from workouts. To accelerate recovery, whey protein, cold water immersion, American ginseng, curcumin, allicin, optimal testosterone levels, vitamin C, and collagen protein have all been found to attenuate creatine kinase levels.
- **Muscle Injury-COL1A1** You have the wild-type CC genotype that is associated with an increased need for dietary collagen for healthy skin, tendons, corneas, lungs, and bones. Vitamin C, zinc, copper, glycine, proline, lysine, and B6 are all precursors to collagen production.
- **Raw Fruit and Vegetable Intake-9p21** You have the heterozygous genotype that is associated with an increased need for phytonutrients from a higher raw fruit and vegetable intake for a healthy heart.
- **Triglycerides-FADS1** Your genotype is associated with a higher need for EPA and DHA omega-3 fatty acids to maintain healthy triglyceride levels.
- Blood Clots-F5 Your genotype is associated with a higher sensitivity to elevated homocysteine levels and oral contraceptives (if female) for blood clots. Increasing foods that contain omega-3 fatty acids, vitamin E and keeping homocysteine levels in range may help reduce the risk of blood clots.
- **Stress-ADRB2** You have the heterozygous AG genotype for ADRB2 rs104271 that is associated with a higher sensitivity to chronic stress on your heart, especially with variants in COMT. Optimize COMT function and ADRB2 with foods that contain magnesium and vitamin C, deep breathing, and consider adaptogens to lower the stress response.
- Blood Pressure-ACE1 Your genotype is associated with higher serum levels of ACE and sensitivity to increased ACE levels, elevated blood pressure, and insulin resistance from a high saturated fat diet. Keeping total fat intake below 37%, limiting saturated fat to 22 grams per day, and increasing bilberry, grapes, raw garlic, cinnamon, and jasmine helps maintain healthy levels of ACE.
- Phytoestrogens-TMPRSS2 You have the GG genotype that is associated with a higher expression of the TMPRSS2 gene and could increase the susceptibility to viral infections and prostate issues (men). To decrease TMPRSS2 expression, increase your intake of phytoestrogens, curcumin, and lycopene.

# YOUR PERSONALIZED DNA-BASED GROCERY LIST

This section of the report represents the most expansive, actionable summary of what you can do, right now, to dramatically up-regulate gene function, building a happier, healthier you! No technical expertise is required - just make these recommendations non-negotiable when you visit the grocery store.

Your grocery list is generated based on a combination of unique gene variants that require an increased intake of the following vitamins, minerals, phytonutrients, amino acids, fiber and more. This list generates the foods and drinks based on the highest levels for each section and does not take into account any food allergies or sensitivities.



B12

Seafood, meat, dairy (if consuming dairy) and unfiltered fermented drinks



В6

Wild salmon, yellowfin tuna, liver, chicken breast, unfiltered fermented drinks, pistachios, avocado, sweet potatoes, and spinach



Beta-Carotene

Sweet potatoes, carrots, spinach, squash, cantaloupe, and broccoli



**B**etaine

Spinach, shrimp, beets, and whole grain sourdough bread



Choline

Pastured eggs, beef round, liver, heart, chicken, wild cod, bacon, and edamame



Copper

Potatoes, shiitake mushrooms, cashews, sunflower seeds, dark chocolate, and shellfish



Glucosinolates

Brussels sprouts, mustard greens, turnips, savoy cabbage, kale, watercress, red cabbage, broccoli cauliflower, and Bok Choy





Vitamin C

Bell peppers, guava, black currants, strawberries, oranges, and broccoli



Vitamin D

Sockeye salmon, cod liver oil, canned tuna, wild herring, and sardines



Vitamin E

Sunflower seeds, almonds, avocado, spinach, butternut squash soup, and olive oil

# PERSONALIZED BLOOD WORK

These results are generated based on a combination of gene variants unique to you. These biomarkers may not be out of range based on your diet and lifestyle habits, but they may be the ones for you to monitor to ensure you are making the right choices based on your genetic results (your predispositions).

For example, if vitamin D comes up in this section, it does not mean that your current levels of vitamin D are actually low. What we are saying is that based on a variety of genetic factors, your variants could make it more difficult to obtain recommended levels of circulating vitamin D, so it might be prudent to further monitor to ensure that you are taking the necessary steps to turn genetic weaknesses into strengths and maintain correct levels.



B12

If poor B12 status is suspected, methylmalonic acid (MMA) levels may be needed to accurately assess B12 status, absorption, and requirements



Fasting Glucose and HbA1C

Check both fasting glucose and HbA1C



Homocysteine

Homocysteine should be between 7-9



Iodine

A urinary iodine test can assess iodine levels



LDL

Test LDL-P, LDL-C, and small dense LDL



**Thyroid Panel** 

The genes for the thyroid gland look at T3 and T4 function, but not TSH



Vitamin D

Vitamin D should be between 35-50 ng/ml. Check both 25 and 1,25-dihydroxyvitamin D.

# MY CLINICAL RESEARCH SUMMARY: NUTRIENT METABOLISM & DIGESTION

# Beta Carotene to Vitamin A Conversion Rate-BCMO1

Below is a summary of your most significant variant genotypes:

| GENE                      | GENOTYPE        |
|---------------------------|-----------------|
| BCMO1 A379V rs7501331     | Heterozygous CT |
| BCMO1 R267S<br>rs12934922 | Wild Type AA    |

# Recap



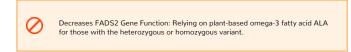


# BETA CAROTENE TO VITAMIN A CONVERSION RATE-BCMO1

**Research**: If you are heterozygous or homozygous for BCMO1 A379V or BCMO1 RS267S, you have a reduced conversion of beta-carotene to vitamin A. If you have a heterozygous or homozygous BCMO1 RS267S and BCMO1 RS267S, the reduction is even more dramatic. Many nutrition labels will have beta-carotene listed as vitamin A, however this is not true vitamin A.

The normal conversion for beta-carotene (carrots, sweet potatoes) to retinol is 1:6 and 1:12 for other carotenoids. Female volunteers carrying the T variant of rs7501331 (379V) had a 32% lower ability to convert beta-carotene, and those carrying at least one T in both SNPs (379V and R267S) show a 69% lower ability to convert beta-carotene into retinol.

In a cohort study of 48,400 US men and 75,170 US women, during a follow-up period of more than 26 years, a higher total vitamin A intake was associated with a reduction in cutaneous squamous cell carcinoma risk.


You want to make sure you consume animal based vitamin A (pastured egg yolks, wild salmon oil, cod liver oil, butter) along with zinc for digestive lining repair, oral health, eye health, iron mobilization, mitochondria health, skin health (sunburns deplete vitamin A in the skin, and acne responds to vitamin A), healthy lung function, and increased immunity.

# ALA to EPA and DHA Conversion-FADS2

Below is a summary of your most significant variant genotypes:

| GENE           | GENOTYPE        |
|----------------|-----------------|
| FADS2 rs1535   | Heterozygous AG |
| FADS2 rs174575 | Heterozygous CG |





# ALA TO EPA AND DHA CONVERSION-FADS2

**Research**: You may have a decreased conversion rate of the plant based omega-3 fatty acid ALA to DHA and should choose DHA sources for sufficient omega-3's.

FADS1 and FADS2 are enzymes that are involved in converting omega-3 and omega-6 fatty acids for brain development and inflammation control. Like the lactase gene, FADS1 is likely to be a critical gene of adaptation. In this case, it was in response to a plant-based diet versus a meat and fish based diet depending on migration routes and food availability.

It has been hypothesized that populations that began to rely more on plant-based diets adapted with the selected allele in FADS2 to synthesize more EPA and DHA from plants. The Inuit populations of Greenland, for example, who rely heavily on seafood with very little plant intake, have a deleted allele showing an opposite adaptation to a diet without plants.

A meta-analysis has found an association between variants in FADS2 in European heritage and a low conversion rate of ALA (plant-based omega-3) to DHA. There is also evidence for gene variants in those with African, Chinese, and Hispanic ancestry having a reduced conversion rate.

Children who had a higher dietary ratio of omega-6 to omega-3 were vulnerable for developing colitis if they also presented specific variants in FADS2.

A higher need of animal-based EPA and DHA may be needed for those with variants in FADS2.

### B6-NBPF3

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE        |  |
|-----------------|-----------------|--|
| NBPF3 rs4654748 | Heterozygous CT |  |

# Recap





Decreases NBPF3 Gene Function: Sugar, stress, high intake of alcohol and refined flour based carbohydrates, antibiotics, oral contraceptives, ACE inhibitors, antacids, proton pump inhibitors, Phenytoin, bronchodilators, Digoxin, diuretics, hormone replacement therapy, Estradiol, MAO inhibitors, St. John's Wort and Parnate.

# B6-NBPF3

**Research**: You may require a higher intake of B6. Heterozygotes have a 1.45 ng/mL lower Vitamin B6 blood concentration than the wild-type genotype.

Vitamin B6 plays a major role in neurotransmitter health. B6 deficiency can manifest as anorexia, irritability, anxiety, depression, muscle pain, bad PMS/low progesterone, nausea, seizures, migraines, dermatitis, age related macular degeneration (with low folate and B12) and lethargy.

Researchers have found an inverse association between ovarian cancer risk and vitamin B6 intake. Subjects with the highest vitamin B6 intake showed a 24 percent decrease in the likelihood of developing ovarian cancer compared to the individuals with the lowest intake.

Women of reproductive age, especially current and former users of oral contraceptives, teenagers, male smokers, non-Hispanic African-American men, and men and women over age 65 are most at risk of B6 deficiency. Data suggests that oral contraceptive users have extremely low plasma PLP levels. Three quarters of the women who reported using oral

contraceptives, but not vitamin B6 supplements, were vitamin B6 deficient.

### Fat Metabolism-ACSL1

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE     |
|-----------------|--------------|
| ACSL1 rs9997745 | Wild Type GG |

# Recap





### FAT METABOLISM-ACSL1

**Research**: If you have the GG genotype, it may be beneficial for fat intake to be below 35% of your total calories or have a higher intake of polyunsaturated fat from fish, nuts and seeds if you struggle with weight and high glucose.

The GG genotype had higher fasting glucose and insulin concentrations compared with the minor A allele carriers from saturated fat intake, with the result that the GG genotype was more insulin resistant. Among individuals within the top 50th percentile of PUFA intake, the metabolic syndrome risk associated with GG genotype was eliminated.

Foods that are higher on the insulin index include dairy and red meat, and insulin inhibits fat breakdown. Fat should come primarily from nuts, seeds, olive oil, avocados, poultry and fish if there are issues with fasting glucose, insulin or weight.

# Uric Acid-ABCG2

Below is a summary of your most significant variant genotypes:

| GENE                    | GENOTYPE        |
|-------------------------|-----------------|
| ABCG2 (Q141K) rs2231142 | Heterozygous GT |

# **URIC ACID-ABCG2**

Research: Uric acid is produced during the breakdown of purines formed in the body and in certain foods and drinks. Uric acid is then carried by your blood and passed through your kidneys where it is excreted in the urine. High serum levels of uric acid is defined as greater than 7.0 mg/dL in men and 6.0 mg/dL in women. Very low and very high levels appear to be clinically relevant.

Variants in the ABCG2 gene was correlated with a 53% reduced urate transport rate compared to the normal genotype. Data from a population-based study of 14,783 individuals support rs2231142 as the causal variant in the region and show highly significant associations with urate levels and gout. Data indicates that at least 10% of all gout cases in Caucasions are attributable to this causal variant.

Uric acid has a paradoxical function as both an antioxidant in blood plasma (preserving SOD3 function) and a pro-oxidant in cells. An acute rise in uric acid may show the body trying to protect against oxidative stress in the presence of vitamin C. Uric acid is capable of binding iron and inhibits iron-dependent ascorbate oxidation, preventing oxidative stress. It also stimulates expression of a glutamate transporter in astroglia, by which it protects neurons from glutamate-induced toxicity.

Very low levels of uric acid are being investigated for glutamate toxicity related disorders like Alzheimer's disease, Huntington's disease, Parkinson's disease, and Multiple Sclerosis. In a treatment of patients with a uric acid precursor, inosine, it prevented progression of multiple sclerosis in all 11 patients tested and even improved the symptoms of some patients.

However, chronically high uric acid levels are strongly associated with gout, hypertension, obesity, insulin resistance, elevated triglycerides, type 2 diabetes, kidney disease, uric acid kidney stones, oxidized LDL and cardiovascular disorders.

Gout is caused by an excess of uric acid in the blood and deposits of uric acid salts in the tissue around the joints, especially in the fingers and toes. One study found that men who drank two or more sugar-sweetened beverages a day have an 85% higher chance of developing gout than those who drank such beverages infrequently.

Cherries are one of the best additions for lowering uric acid levels. In one study, cherry intake over a 2-day period was associated with a 35% lower risk of gout attacks compared with no intake. When cherry intake was combined with allopurinol use, the risk of gout attacks was 75% lower than during periods without either exposure.

Ten healthy subjects who swim regularly in ice-cold water during the winter (winter swimming), were evaluated before and after this short-term whole body exposure. A drastic decrease in plasma uric acid concentration was observed during and following the exposure to the cold stimulus.

Another study found that cold exposure allowed men to clear sugar from their blood 43 percent more efficiently than when they started.

A family history of exceptional longevity was associated with lower serum uric acid levels in Ashkenazi Jews.

More research is needed to eludicate the paradoxical role of uric acid.

# Stress and IBS-ADRB2

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE        |
|-----------------|-----------------|
| ADRB2 rs1042714 | Heterozygous CG |

# Recap





# STRESS AND IBS-ADRB2

The pathogenesis of digestive disorders is incompletely understood, although genetic factors, low-grade inflammation, intestinal dysbiosis, abdominal pain, and brain-gut axis dysfunction all have been postulated to contribute.

The beta-2-adrenergic receptor (ADRB2) is the main target of the catecholamine epinephrine and a primary mediator of the stress response. ADRB2 is widely expressed both in the gastrointestinal tract and in the CNS.

Single-nucleotide polymorphisms (SNPs) located in the coding region of the ADRB2 gene have been shown to be associated with increased altered receptor response to catecholamines as well as altered receptor expression. In the case of rs1042714, this may lead to decreased receptor degradation and down-regulation, in turn enhancing the adrenaline response.

For the rs1042714 genotype, both GG homozygotes and CG heterozygotes demonstrated a higher percentage of digestive issues compared with CC homozygotes. The G allele carriers were associated with a higher percentage of IBS cases, twice the rates of anxiety, and functional chest pain diagnoses. Within IBS, G allele carriers had more severe bowel symptoms and symptomatic days.

| Gene & Gene Function                                                                                                                                                                                                                    | Gene Rsid                  | Wild Type | Heterozygous | Homozygous |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|--------------|------------|
| HLA-DQ8                                                                                                                                                                                                                                 | HLA-DQ8-<br>rs7454108      | тт        |              |            |
| HLA DQ2.5                                                                                                                                                                                                                               | HLA DQ2.5-<br>rs2187668    | СС        |              |            |
| BCMO1 A379V<br>BCMO1 encodes the                                                                                                                                                                                                        | BCMO1 A379V-<br>rs7501331  |           | СТ           |            |
| conversion rate from beta-<br>carotene to vitamin A.                                                                                                                                                                                    | BCMO1 R267S-<br>rs12934922 | АА        |              |            |
| FADS2 The FADS2 gene encodes the conversion of plant based omega-3 fatty acid alpha linolenic acid (ALA) to EPA.                                                                                                                        | FADS2-rs1535               |           | AG           |            |
|                                                                                                                                                                                                                                         | FADS2-rs174575             |           | CG           |            |
| FUT2  The FUT2 gene controls prebiotic production, B12 absorption and how much bifidobacteria you carry in your digestive tract. The rs601338 SNP is found in European, African and Indian populations.                                 | FUT2-rs601338              | GG        |              |            |
| NBPF3 NBPF3 has been associated with vitamin B6 levels.                                                                                                                                                                                 | NBPF3-rs4654748            |           | СТ           |            |
| SLC23A1  Solute carrier family 23 member 1 (SLC23A1) is one of the two transporters which aids in the absorption of vitamin C into the body. Polymorphisms in the gene are associated with reduced plasma vitamin C levels in the body. | SLC23A1-<br>rs33972313     | СС        |              |            |
| ACAT1-02 The ACAT gene converts protein and fat to ATP (energy) in the mitochondria, and plays an important role in cellular cholesterol homeostasis.                                                                                   | ACAT1-02-<br>rs3741049     | GG        |              |            |

| Gene & Gene Function                                                                                                                                                                                                                                                                          | Gene Rsid                | Wild Type | Heterozygous | Homozygous |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|--------------|------------|
| ADIPOQ ADIPOQ encodes for adiponectin, a protein secreted by fat cells that affect insulin and glucose metabolism. Low levels of adiponectin play a role in obesity, insulin resistance and Type 2 diabetes.                                                                                  | ADIPOQ-<br>rs2241766     | TT        |              |            |
| HFE-C282Y A homozygous HFE C282Y may lead to an iron overload due to increased iron absorption and disrupted metabolism. Compound heterozygotes C282Y/H63D and single C282Y heterozygotes carry a very low risk of hemochromatosis, making the homozygous C282Y the most clinically relevant. | HFE-C282Y-<br>rs1800562  | GG        |              |            |
| PPAR-alpha The PPAR-alpha gene plays a vital role in fatty acid metabolism and ketosis, and is considered one of the most critical targets for ameliorating abnormalities with triglycerides, HDL, LDL, VLDL, and ApoB.                                                                       | PPAR-alpha-<br>rs1800206 | СС        |              |            |
| ACSL1  Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triglyceride synthesis.  Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome.                                           | ACSL1-rs9997745          | GG        |              |            |
| FTO Polymorphisms in the FTO genes have been shown to cause higher ghrelin levels                                                                                                                                                                                                             | FTO-rs17817449           | тт        |              |            |
| (hunger hormone) in many populations, which can create a larger appetite and the potential for overeating.                                                                                                                                                                                    | FTO-rs9939609            | тт        |              |            |

| Gene & Gene Function                                                                                                                                                                                                            | Gene Rsid                   | Wild Type | Heterozygous | Homozygous |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--------------|------------|
| APOA2  The APOA2 gene contains instructions for making a protein called apolipoprotein A-II, which is found in HDL cholesterol particles. The homozygous genotype has been linked to saturated fat intake and weight gain.      | APOA2-rs5082                |           | AG           |            |
| TCF7L2 TCF7L2 polymorphisms have been associated with low incretin hormones and impaired insulin secretion.                                                                                                                     | TCF7L2-rs7903146            | СС        |              |            |
| LCT LCT is the gene connected with the ability to breakdown lactose in dairy.                                                                                                                                                   | LCT-rs4988235               |           |              | AA         |
| APB1  APB1 is encodes for the DAO enzyme to breakdown histamines primarily in the digestive tract. The homozygous genotype may increase the risk of migraines from histamines in women or a hypersensitivity to Aspirin in men. | APB1-rs10156191             | CC        |              |            |
| ABCG2 (Q141K) The ABCG2 (Q141K) gene is located at the membrane of kidney proximal tubule cells, where it mediates renal urate secretion. Variants in this gene are linked to reduced uric acid excretion.                      | ABCG2 (Q141K)-<br>rs2231142 |           | GΤ           |            |

| Gene & Gene Function                                                                                                                                                                                                                                                                                                                                      | Gene Rsid              | Wild Type | Heterozygous | Homozygous |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|--------------|------------|
| ALDH2 Alcohol metabolism in the liver most commonly involves the enzymes alcohol dehydrogenase and aldehyde dehydrogenase, metabolizing alcohol to acetaldehyde, and then to acetate. ALDH2 encodes for aldehyde dehydrogenase, and variants can affect the levels of acetaldehyde and therefore the carcinogenic effect of alcohol.                      | ALDH2-rs671            | GG        |              |            |
| ADRB2 The beta-2-adrenergic receptor (ADRB2) is the main target of the catecholamine epinephrine, and a primary mediator of the stress response. ADRB2 is widely expressed both in the gastrointestinal tract and in the CNS.                                                                                                                             | ADRB2-rs1042714        |           | CG           |            |
| PPCDC  PPCDC is necessary for the biosynthesis of coenzyme A and variants in this SNP are associated with serum zinc levels.                                                                                                                                                                                                                              | PPCDC-rs2120019        | тт        |              |            |
| SELENBP1  The Protein Selenium Binding 1 gene codes for an integral membrane protein involved in antigen presentation and serum copper levels.                                                                                                                                                                                                            | SELENBP1-<br>rs2769264 |           | GT           |            |
| TFR2 The TFR2 gene provides instructions for making a protein called transferrin receptor 2 to help iron enter liver cells. The receptor on the surface of liver cells binds to transferrin, which transports iron through the blood to tissues throughout the body. When transferrin binds to transferrin receptor 2, iron is allowed to enter the cell. | TFR2-rs7385804         |           | AC           |            |

# MY CLINICAL RESEARCH SUMMARY: METHYLATION CYCLE

# Folate-MTHFR 677

Below is a summary of your most significant variant genotypes:

| GENE                | GENOTYPE     |
|---------------------|--------------|
| MTHFR 677 rs1801133 | Wild Type GG |

# Recap

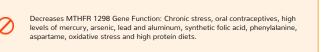




#### **FOLATE-MTHFR 677**

You have the wild-type genotype common in northern climates. This genotype is associated with lower folate requirements unless you have the MTHFR 1298 homozygous genotype. The wild-type MTHFR 677 genotype assists with healthy homocysteine levels.

The wild-type genotype is associated with reduced protection against UV-induced DNA damage from the sun due to lower thymidine production.


# Folate-MTHFR 1298

Below is a summary of your most significant variant genotypes:

| GENE                 | GENOTYPE      |
|----------------------|---------------|
| MTHFR 1298 rs1801131 | Homozygous GG |

## Recap





#### FOLATE-MTHFR 1298

The homozygous MTHFR 1298 gene has a 40% reduction in enzymatic function.

MTHFR 677 and 1298 are connected to BH4 levels, with individuals who are homozygous having a much higher sensitivity to the drain on BH4 from stress, heavy metals, high blood sugar, vegetable oils, chronic stress, high levels of mercury, arsenic, lead and aluminum, synthetic folic acid, phenylalanine, aspartame, oxidative stress and high protein diets.

BH4 structurally resembles folate and has been described to be reduced in endothelial cells when increased levels of homocysteine are present. High protein diets produce higher amounts of ammonia, which drains BH4, and the body stores ammonia as glutamate, compounding issues with the GAD1 genes). This can lead to an individual with higher anxiety levels, especially those with elevated glutamate levels.

76

The heavy metal sensitivity may be why men with the homozygous MTHFR 1298 genotype have a statistically higher significance of infertility. Tulsi (holy basil) has also been shown to protect against the toxic effects of heavy metals such as lead, arsenic, cadmium, chromium and mercury, and the toxic effects of radiation.

BH4 plays an important role in the formation of all the neurotransmitters (serotonin, melatonin, dopamine, epinephrine, norepinephrine etc.) and immunity. Mice studies have shown that raising BH4 normalizes serotonin levels and digestive function. In one human study, levels of BH4 in cerebrospinal fluid was 42% lower in children with Autism Spectrum Disorder (ASD).

One study in 259 post-menopausal women found that for those with certain genotypes in CYP1B1 (rs1056836), KRAS (rs61764370) and MTHFR (rs1801133 and rs1801131), oral contraceptives and hormone replacement therapy was associated with shorter leukocyte telomere length. Shorter leukocyte telomeres are connected to premature aging, and may increase the risk of cancer, cardiovascular disease, obesity, diabetes, chronic pain, and sensitivity to perceived psychological stress.

Research has found that vitamin C, L-arginine, folate, B6, magnesium, holy basil, selenium, royal jelly and deep breathing techniques all increase BH4 levels.

Relaxation techniques (yoga, meditation, Qi Gong) involve slow, deep breathing and have been found to be an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging.

#### Folate-MTHFD1 G1958A

Below is a summary of your most significant variant genotypes:

| GENE                       | GENOTYPE        |
|----------------------------|-----------------|
| MTHFD1 G1958A<br>rs2236225 | Heterozygous AG |

#### Recap



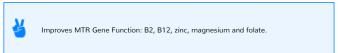
Improves MTHFD1 Gene Function: 5-formyl-tetrahydrofolate (folinic acid) and



Decreases MTHFD1 Gene Function: Folate and choline deficiency, proton pump inhibitors, oral contraceptives, NSAIDs, anticonvulsants, antivirals, antibiotics, and acid blockers/antacids.

#### FOLATE-MTHFD1 G1958A

Research: A meta-analysis strongly suggests that the MTHFD1 G1958A polymorphism might be associated with maternal risk for neural tube defects in Caucasian populations. However, the evidence of this association should be interpreted with caution due to the selective nature of publication of genetic association studies. Another study found that the polymorphism decreases enzyme stability and increases risk of congenital heart defects.


5-formyl-tetrahydrofolate is the second most common type of folate after methylfolate in the certain foods. This is why dietary folate is optimal because it addresses both upstream and downstream folate gene polymorphisms in the methylation cycle.

Checking MTHFR and PEMT genes along with MTHFD1 helps you determine your requirements for folinic acid, methylfolate and choline to help stabilize enzymatic function.

#### B12, B2 and Zinc-MTR

| GENE                 | GENOTYPE      |
|----------------------|---------------|
| MTR A2756G rs1805087 | Homozygous GG |

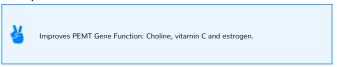
#### Recap





#### B12, B2 AND ZINC-MTR

Research: Methionine synthase (MTR) is a vital enzyme of homocysteine/methionine metabolic pathway. To function properly, methionine synthase requires methylcobalamin (methyl B12) and another enzyme called methionine synthase reductase, which is produced from the MTRR gene.


When MTRR/MTR are inhibited, the compensation pathway is BHMT (betaine-homocystine methyltransferase)increasing betaine and choline requirements.

# Choline-PEMT

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE      |
|-----------------|---------------|
| PEMT rs7946     | Homozygous TT |
| PEMT rs12325817 | Homozygous GG |

#### Recap





# **CHOLINE-PEMT**

Improves PEMT Gene Function: Choline, vitamin C and estrogen.

**Decreases Gene Function**: Nighttime pain relievers, antihistamines, anti-seizure medications, sleep aids, antidepressants, incontinence drugs and narcotic pain relievers.

Research: Phosphatidylethanolamine-N methyltransferase (PEMT) catalyzes the synthesis of phosphatidylcholine.

Choline is responsible for shuttling fat out of the liver, aiding the gallbladder, healthy cell membranes to protect against inflammation, lowering anxiety, preventing damage from glutamate spikes, deep sleep, healthy DNA, healthy pregnancy and breast health. Non-Alcoholic Fatty Liver Syndrome occurs mainly from a choline deficiency. Choline deficiency also increases sensitivity to carcinogenic chemicals, mycotoxins and vegetable oils due to poor cell membrane health.

Research shows that the highest dietary intake of choline is found from people in the Northern countries, whereas Mediterranean countries had the lowest intake. Worldwide, total choline intake in adults ranges from 284 mg/day to 468 mg/day for men, from Taiwan and Sweden, respectively; and from 263 mg/day to 374 mg/day for women, from Mexico and Sweden. Major food sources of dietary choline vary by country. For example, eggs, meat, and dairy are the major sources of total dietary choline in New Zealand, while eggs, seafood, meats, and soy products are the predominant sources in Japan and

Having one or more T alleles at rs7946 is associated with having lower phosphatidylcholine production in the liver.

More than 40% of women have a genetic polymorphism in PEMT (rs12325817) that makes this gene unresponsive to estrogen, which creates the same high choline requirement as men. These women may be especially sensitive to dietary choline variations during pregnancy. One study found that the highest quintile of choline consumption was associated with a lower risk of breast cancer compared with the lowest quintile.

Eighty percent of the women who were homozygous for the rs12325817 SNP manifested signs of choline depletion (liver or muscle dysfunction), relative to 43% of subjects carrying one copy of the variant allele and 13% of subjects without the SNP. Almost 75% of the North Carolina population in the United States has one variant allele.

#### **B6-CBS**

Below is a summary of your most significant variant genotypes:

| GENE                  | GENOTYPE      |
|-----------------------|---------------|
| CBS A13637G rs2851391 | Homozygous TT |

#### Recap





Decreases Gene Function: Antibiotics, arsenic, birth control, ACE inhibitors, antacids, proton pump inhibitors, Phenytoin, bronchodilators, Digoxin, diuretics, hormone replacement therapy, Estradiol, MAO inhibitors, St. John's Wort, high cysteine and Parnate.

#### B6-CBS

**Research**: CBS is an important enzyme in the transsulfuration pathway that catalyzes the conversion of homocysteine (HCY) to cystathionine, a substrate for glutathione synthesis.

The CBS gene requires B6 and healthy SAMe production to regulate function. Deficiencies in CBS activity are the most frequent cause of familial high homocysteine and the underlying cause of the CBS genetic disorder homocystinuria, which is characterized by severe high homocysteine levels.

Research has hypothesized that rs2851391 variants might reduce the activity of CBS, and thus was positively associated with homocysteine levels and a marginal association with decreased plasma B12 levels.

One study demonstrated a significant association of both elevated homocysteine levels and low vitamin B6 levels with CBS polymorphisms in the presence of nonvalvular atrial fibrillation.

Hydrogen sulfide (H2S) may also need to be the focus with CBS and homocysteine levels. H2S is produced in the brain, pancreas, liver, reproductive tissues. Low levels of HS2 affect repair of the GI tract and disrupted levels of HS2 can lead to cognitive deficits or excitation in the brain.

Reduced CBS activity could cause low H2S concentrations, affecting mitochondrial health and the gut/brain axis. Abnormalities of hydrogen sulfide in the body have been identified in several disorders including ulcerative colitis, Alzheimer's disease, Down's syndrome, and possibly in diabetes.

| Gene & Gene Function                                                                                                                                                                                                             | Gene Rsid                   | Wild Type | Heterozygous | Homozygous |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--------------|------------|
| MTHFR 677 The MTHFR 677 gene encodes the MTHFR gene to convert folate into the active form, methylfolate. Variants in this gene slow down enzymatic function.                                                                    | MTHFR 677-<br>rs1801133     | GG        |              |            |
| MTHFR 1298  MTHFR 1298 is involved in converting 5-methylfolate (5MTHF) to tetrahydrofolate (THF). Unlike MTHFR 677, the 1298 variant does not lead to elevated homocysteine levels unless paired with a heterozygous MTHFR 677. | MTHFR 1298-<br>rs1801131    |           |              | GG         |
| MTHFD1 G1958A  (Methylenetetrahydrofolate dehydrogenase 1) encodes a protein that possesses three distinct enzymatic activities in the interconversion of 1-carbon derivatives of tetrahydrofolate.                              | MTHFD1 G1958A-<br>rs2236225 |           | AG           |            |
| DHFR A20965G Dihydrofolate reductase (DHFR) catalyzes the                                                                                                                                                                        | DHFR A20965G-<br>rs1643659  |           | СТ           |            |
| reduction of dihydrofolate to<br>tetrahydrofolate (THF) and<br>affect synthetic folic acid<br>metabolism.                                                                                                                        | DHFR C19483A-<br>rs1677693  |           | GT           |            |
| MTR A2756G  MTR (methionine synthase) combines folate, methyl B12 and homocysteine into methionine.                                                                                                                              | MTR A2756G-<br>rs1805087    |           |              | GG         |
| MTRR A66G  MTRR attaches a methyl group to B12 and variants here will slow the process.  When both MTR and MTRR exist, dysfunction can occur.                                                                                    | MTRR A66G-<br>rs1801394     | AA        |              |            |

| Gene & Gene Function                                                                                                                                         | Gene Rsid                 | Wild Type | Heterozygous | Homozygous |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------------|
| TCN2 C766G  Transcobalamin II (TCN2, or holotranscobalamin when bound) transports B12 to peripheral tissues. Variants in this gene may affect B12 transport. | TCN2 C766G-<br>rs1801198  |           | CG           |            |
| PEMT Variants in PEMT may                                                                                                                                    | PEMT-rs7946               |           |              | тт         |
| increase the need for choline and increase the sensitivity to anticholinergic drugs.                                                                         | PEMT-rs12325817           |           |              | GG         |
| CBS A13637G  The Cystathione Beta- Synthase (CBS) enzyme pulls homocysteine to hydrogen sulfide (H2S) and glutathione, requiring B6 and SAMe as a modulator. | CBS A13637G-<br>rs2851391 |           |              | ТТ         |
| CBS The Cystathione Beta- Synthase (CBS) enzyme pulls homocysteine to hydrogen                                                                               | CBS-rs234709              |           | СТ           |            |
| sulfide (H2S) and glutathione, requiring B6 and SAMe as a modulator. CBS rs234709 and rs4920037 assists in arsenic detoxification.                           | CBS 191150T-<br>rs4920037 |           | AG           |            |
| ВНМТ                                                                                                                                                         | BHMT-rs3733890            |           | AG           |            |

# MY CLINICAL RESEARCH SUMMARY: HORMONE SUPPORT

# Thyroid-DI01

Below is a summary of your most significant variant genotypes:

| GENE           | GENOTYPE      |
|----------------|---------------|
| DI01 rs2235544 | Homozygous AA |

## Recap





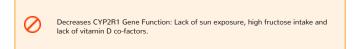
Decreases DI01 Gene Function: Fluoride, fluoroquinolone antibiotics, brominated vegetable oils found in certain soft drinks and sports drinks, certain pesticides, potassium bromate, fire retardants, high mercury or cadmium levels, statin drugs, antacids, proton pump inhibitors, anti-depressants, anti-fungal medications, high lithium supplementation, oral contraceptives, SERMS and corticosteroids.

#### THYROID-DI01

Research: For the DI01 gene rs2235544, numerous studies have confirmed that the CC genotype has lower T4, and the AA genotype has higher T4 levels. This pattern suggests that the C allele confers improved function of DI01 and would result in increased conversion of free T4 to T3 and reverse T3 to T2. The CC and AC genotype should have normal function while the AA genotype may be more prone to high T4.

In the first birth cohort study looking at DI01 and organochlorines, researchers found that pregnant women with a higher exposure to organochlorine pesticides and PCBs with the AA genotype had a larger decrease in T3 levels. The hypothesis is that the AA genotype is more susceptible to chlorine-based chemicals blocking the DI01 enzyme from converting T4 to T3. High T4 is associated with pregnancy-induced high blood pressure and preeclampsia.

Fatty acid synthase protects cancer cells from apoptosis. The over-expression of fatty acid synthase has been significantly observed in many types of cancer and occurs with high levels of T4. The Rotterdam study included 10,318 patients with baseline measurements for free T4 and TSH, followed for a median of 10.4 years. Higher free T4 (thyroxine) levels were associated with a higher risk for lung and breast cancer, but not prostate or GI cancers. No association was found for TSH levels.


In glioblastoma patients, a 2019 study found that the DI01 rs2235544 CC genotype was associated with a significantly lower risk of death at two years compared to AA and AC genotypes. The C-allele of the DI01 SNP rs2235544 was related to increased circulating free T3/ free T4 ratio in glioma and meningioma patients, indicating a greater T4 to T3 conversion.

Both selenium and zinc target DI01 for the conversion of T4 to T3. If your T4 is high, consider increasing your selenium and zinc intake.

# Vitamin D-CYP2R1

| GENE              | GENOTYPE        |
|-------------------|-----------------|
| CYP2R1 rs10741657 | Heterozygous AG |





#### VITAMIN D-CYP2R1

**Research**: Studies confirm that CYP2R1 is the principal 25-hydroxylase in humans and demonstrates that CYP2R1 alleles have dosage-dependent effects on vitamin D homeostasis.

A 2018 meta-analysis of sixteen articles with a total of 52,417 participants was reviewed for rs10741657. The GG genotype was associated with a clear descending trend of 25(OH)D levels when compared with the AA genotype in Caucasian and Asian populations.

Research has shown that oral administration of vitamin D led to negligible increases in serum 25-hydroxy-vitamin D for homozygotes, and significantly lower increases in serum 25-hydroxy-vitamin D in heterozygous subjects than in control subjects. The heterozygous effect may only be relevant in Caucasian populations.

Vitamin D can influence the expression of more than 1,000 genes and vitamin D deficiency has been linked to fatty liver, seizures, infertility, osteoporosis, cancer, autism (mother deficient), depression, heart attacks, Alzheimer's, dementia, high blood pressure, low testosterone in men, autoimmune disorders and more.

The literature is mixed on optimal vitamin D levels, which most likely vary based on your heritage, skin color and current health issues. The most well documented cause of Vitamin D deficiency is inadequate sunlight exposure such as high latitude countries. Paradoxically, despite its high sunlight hours, vitamin D deficiency is well recognized in Middle Eastern women, inner city young adults in America, athletes and dancers in Israel, elite gymnasts in Australia, young Hawaiian surfers, and adolescent girls in England.

For athletes, vitamin D deficiency has long been associated with muscle weakness and suboptimal muscle function. A positive relationship between serum vitamin D level and jump height, jump velocity and power was found in young women.

Clinical vitamin D deficiency is below 20 ng/ml. There is little evidence to prove there is a benefit for levels above 50 ng/ml. The latest cancer research has found that women with 25(OH)D concentrations greater than 40 ng/ml had a 67% lower risk of cancer than women with concentrations less than 20 ng/ml. Pesticides have been linked to suppressing vitamin D levels and creating a vitamin D deficiency. Your PON1 gene function should also be assessed.

Research has found that sunlight is the optimal way to optimize vitamin D levels along with exercise, vitamin D rich foods and vitamin D cofactors, however supplementation may be necessary.

#### Estrogen Metabolism-COMT

Below is a summary of your most significant variant genotypes:

| GENE        | GENOTYPE        |
|-------------|-----------------|
| COMT rs4680 | Heterozygous AG |

#### Recap



Improves COMT Gene Function: Vitamin C, magnesium, and copper (copper should not be too low or too high).



Decreases Gene Function: Chronic stress, sugar, proton pump inhibitors, aspartame, low magnesium levels, low vitamin C levels, low and high copper levels, constipation, xenoestrogens, high homocysteine levels, high SAH levels, estrogenbased medications, and mercury toxicity.

#### 83

# ESTROGEN METABOLISM-COMT

COMT is a phase II enzyme involved in the inactivation of catechol estrogens that can otherwise lead to cancerous growth, while also increasing 2-methoxyestradiol, a metabolite that has been shown to inhibit the growth of breast cancer cells.

Variants in COMT V158M have been shown to decrease enzymatic activity and consequently increases the risk of carcinogenesis due to the accumulation of estrogen metabolites. COMT has been extensively investigated for correlation with different cancer risks including esophageal cancer, colorectal cancer, hepatocellular, carcinoma, lung cancer, breast cancer, ovarian cancer, endometrial cancer, testicular germ cell tumor, and bladder cancer with mixed results.

Due to the COMT V158M heterozygous and homozygous genotypes potentially having reduced estrogen clearance, slowing this pathway down further with chronic stress and a high catecholamine intake combined with poor gut health and low magnesium intake may affect the level of harmful estrogen metabolites.

However, this doesn't mean catecholamines should be avoided. It simply means that the dosage should be altered. For example, green tea has been found to be beneficial for breast cancer prevention in the COMT heterozygous and homozygous genotype because these individuals retained the polyphenols the longest. The wild type may need more to achieve the same benefit. Less is more for COMT variants.

#### MTNR1B-Melatonin

Below is a summary of your most significant variant genotypes:

| GENE              | GENOTYPE      |
|-------------------|---------------|
| MTNR1B rs10830963 | Homozygous GG |

#### Recap





# MTNR1B-MELATONIN

Research: Melatonin is a hormone that helps to maintain our circadian rhythm such as the sleep-wake cycle, neuroendocrine rhythms or body temperature cycles through its action on melatonin receptors. The physiological effects of melatonin are various and include detoxification of free radicals and antioxidant actions, the activation of brown adipose tissue, bone formation and protection, reproduction, and cardiovascular, immune and body mass regulation. However, melatonin also affects glucose levels and insulin release.

In humans, melatonin release starts soon after sundown, reaches a peak between 2am and 4am and decreases gradually after that. However, in approximately one-third of individuals, there is a delay in melatonin release and stays elevated longer in the morning.

Dim light melatonin onset is defined as the start of the melatonin production in the evening during dim light conditions and has become a reliable phase marker of the circadian clock. One study found that MTNR1B G allele carriers had a significant association with delayed circadian phase of dim-light melatonin offset (1.37 hours) and a substantially longer duration of elevated melatonin levels in the morning (41 minutes).

MTNR1B rs10830963 has been associated with one of the strongest effects on insulin secretion and insulin sensitivity out of over 90 common variants identified for Type 2 diabetes and has been associated with gestational diabetes. Variants increase the amount of MTNR1B protein on the surface of insulin-producing cells, making the cells more sensitive to the effects of melatonin, which results in less insulin. Subjects carrying one or two G alleles showed a 2 to 4-fold increase in MTNR1B mRNA expression in human pancreatic islets, respectively, compared with the non-carriers.

The individuals with G allele of rs10830963 has been associated with increased plasma glucose level, decreased serum insulin level and an increased risk of Type 2 diabetes in Caucasians, Asians, African Americans and Hispanics. The researchers suggest that an increase of food intake to coincide with elevated melatonin levels in the evening and early morning lead to decreased glucose tolerance.

In a randomized, cross-over trial to compare glucose tolerance in the presence (late dinner 1 hour before bedtime) or absence (early dinner, 4 hours before bedtime) of elevated physiological melatonin concentrations, researchers compared the results

between homozygous carriers and non-carriers of the MTNR1B risk allele. The concurrence of meal timing with elevated endogenous melatonin concentrations resulted in impaired glucose tolerance. This effect was stronger in MTNR1B risk-carriers than in non-carriers. Furthermore, eating late significantly impaired glucose tolerance only in risk-carriers and not in the non-risk carriers.

Results have also found that in carriers of the MTNR1B risk variant, melatonin supplementation (5 mg) significantly impaired glucose tolerance, with no effect in non-carriers. These results have been recently replicated, and are consistent with our findings even after chronic melatonin administration.

Oral contraceptives have been found to increase nighttime melatonin levels due to inhibiting catalyzing enzymes in the liver, and therefore could theoretically create a higher impact on insulin release and glucose tolerance in G carriers.

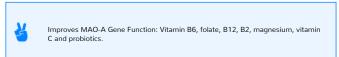
Results have also found that in carriers of the MTNR1B risk variant, melatonin supplementation (5 mg) significantly impaired glucose tolerance, with no effect in non-carriers. The strongest effect was found in the GG carriers. These results have been recently replicated, and are consistent with our findings even after chronic melatonin administration.

A high-fat diet has been found to alter the circadian molecular clock, both centrally and peripherally, leading to a state of disruption in the circadian rhythm that can affect weight. This may be the most relevant for those with the homozygous GG genotype for the MTNR1B gene. For weight loss, the G allele of the MTNR1B genetic variant was significantly associated with a decrease in body weight, BMI, and waist circumference at 6 months in response to a low-fat diet compared to a high-fat diet, with the GG homozygous genotype having the highest correlation.

| Gene & Gene Function                                                                                                                                                                                                                                                                       | Gene Rsid       | Wild Type | Heterozygous | Homozygous |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|--------------|------------|
| SHBG Sex Hormone Binding Globulin (SHBG) is synthesized in the                                                                                                                                                                                                                             | SHBG-rs1799941  | GG        |              |            |
| liver, and in the blood it<br>transports and regulates the<br>access of sex steroids to their<br>target tissues.                                                                                                                                                                           | SHBG-rs12150660 | GG        |              |            |
| SHBG  Sex Hormone Binding Globulin (SHBG) is synthesized in the liver, and in the blood it transports and regulates the access of sex steroids to their target tissues. Variants in this gene have been shown to lead to lower testosterone, calculated free testosterone and SHBG in men. | SHBG-rs6258     | СС        |              |            |
| DI01  DI01 is connected to thyroid health and is responsible for the deiodination of T4 into T3.                                                                                                                                                                                           | DI01-rs2235544  |           |              | AA         |
| DI02  DI02 is connected to thyroid health and is responsible for the deiodination of T4 into T3. D2 is the only activating deiodinase in the brain.                                                                                                                                        | DI02-rs225014   |           | СТ           |            |

| Gene & Gene Function                                                                                                                                | Gene Rsid                 | Wild Type | Heterozygous | Homozygous |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------------|
| CYP2R1  Vitamin D is technically a hormone, and CYP2R1 is connected to circulating vitamin D levels.                                                | CYP2R1-<br>rs10741657     |           | AG           |            |
| CYP1A1  CYP1A1 is in the estrogen metabolism pathway along with CYP1B1, CYP1A2, CYP31A, SULT's and COMT.                                            | CYP1A1-rs1048943          | π         |              |            |
| CYP2C19*17  Genetic variability impacts expression and activity of CYP2C19 and therefore can influence drug metabolism and catabolism of estrogens. | CYP2C19*17-<br>rs12248560 | СС        |              |            |
| CYP1A2  CYP1A2 is a key enzyme in caffeine metabolism and the 2-hydroxylation of the main estrogens, estrone, and estradiol.                        | CYP1A2-rs762551           |           | AC           |            |
| COMT  COMT is involved in catecholamine, dopamine, adrenaline, and estrogen metabolism through the inactivation of the catechol estrogens.          | COMT-rs4680               |           | AG           |            |
| FUT2  The FUT2 gene controls prebiotic production, B12 absorption, and how much bifidobacteria you carry in your digestive tract.                   | FUT2-rs601338             | GG        |              |            |
| MTNR1B The MTNR1B gene encodes for the melatonin receptor 1B.                                                                                       | MTNR1B-<br>rs10830963     |           |              | GG         |
| CYP27B1                                                                                                                                             | CYP27B1-<br>rs4646536     |           |              | AA         |
| VDR-FOK                                                                                                                                             | VDR-FOK-<br>rs2228570     |           |              | GG         |

| Gene & Gene Function | Gene Rsid        | Wild Type | Heterozygous | Homozygous |
|----------------------|------------------|-----------|--------------|------------|
| GC                   | GC-rs2282679     | тт        |              |            |
| DHCR7                | DHCR7-rs12785878 | тт        |              |            |


# MY CLINICAL RESEARCH SUMMARY: MENTAL HEALTH & COGNITIVE PERFORMANCE

#### **MAO-Serotonin**

Below is a summary of your most significant variant genotypes:

| GENE         | GENOTYPE     |
|--------------|--------------|
| MAO-A rs6323 | Wild Type TT |

#### Recap





#### MAO-SEROTONIN

**Research**: MAO-A (Monoamine oxidase A) is a critical enzyme involved in breaking down important neurotransmitters such as serotonin, estrogen, norepinephrine, and dopamine.

You have the TT genotype that encodes for the slow activity of the MAO-A enzyme, which helps preserve serotonin. The TT genotype, constipation, and high estrogen cause a very slow MAO-A enzyme in females, which can increase sensitivity to stress due to high levels of estrogen, serotonin, and poor detoxification. Fiber, B6, B2, and magnesium are crucial for this genotype. The TT genotype may also make you more sensitive to MAO inhibitors, SSRIs, antibiotics and oral contraceptives depending on your estrogen status.

Research has found that the transport of tryptophan (precursor to serotonin) is lower in children with ADHD, and one study found that the rs6323 TT genotype was a protective factor against ADHD in Korean children.

Serotonin levels are more complicated than assessing just MAO-A, including gender, estrogen fluctuations, chronic stress, antibiotic use and general gut health, COMT function, and serotonin transportation and receptor genes. Serotonin is responsible for well-being, happiness, memory, and appetite. When serotonin is too low, it can cause depression, lack of ambition, and a struggle to derive pleasure from life. When it is dysregulated, it can cause IBS, mania, OCD, and drug-induced serotonin syndrome.

To modulate healthy serotonin levels, research has found that aerobic exercise to fatigue, strength training, yoga, and nature walks all are effective. Fermented foods and probiotics (90% of serotonin is made in the gut), getting more sunlight, or taking vitamin D, dark chocolate, fish oil, and a weekly massage are also excellent strategies. However, both extremes of a sedentary lifestyle and excessive exercise negatively affect MAO-A.

## Serotonin Receptor-Stress

| GENE          | GENOTYPE        |
|---------------|-----------------|
| 5-HT2A rs6311 | Heterozygous CT |
| 5-HT2A rs6313 | Heterozygous AG |

#### Recap



Improves Gene Function: Moderate intensity aerobic exercise, cognitive behavioral therapy, mindfulness training, meditation, yoga, tryptophan, green or black tea, prebiotics, probiotics, B2, B6, B12, and folate.



Decreases 5-HT2A Gene Function: Chronic stress, poor gut flora, high-dose lithium, cannabis abuse, and excessive smartphone use.

#### SEROTONIN RECEPTOR-STRESS

Research: The serotonin 2A receptor (5-HT2A) has been implicated in mental disorders with complex etiologies that are still not clearly understood, in processes such as learning and memory, and also in neurogenesis. Although the functional significance of 5-HT2A polymorphisms are not entirely understood, there is evidence that rs6311 modulates transcription factor binding and promoter methylation, affecting gene transcription (the first step of gene expression).

The T allele of the 5-HT2A gene rs6311 has been shown to increase the 5-HT2A expression in vitro and is associated with anxiety, IBS and depressive disorders. It has also been hypothesized that 5-HT2A variants may influence resting vagal activity among persons with chronically high levels of perceived stress.

One meta-analysis showed that the T allele of rs6311 or the linked A allele of rs6313 was significantly associated with obsessive compulsive disorder (OCD). This result was confirmed in the author's subsequent comprehensive meta-analysis in 2016 with a larger dataset. Multiple studies in this analysis indicated that the rs6311 T allele was more abundant in females with OCD compared to control females.

Another meta-analysis of 37 twin samples suggests that obsessions and compulsions arise from a combination of genetic factors and non-shared environment. OCD might be shaped by a large number of genes of modest impact, which combine to influence the risk for developing OCD. Polymorphisms in genes related to BDNF, GABA, glutamate, serotonin, acetylcholine, glycine, ubiquitin, bradykinin, myelinization, TNFA, gender and environmental trauma may all have a cumulative effect on whether or not someone develops OCD.

Psoriasis is a chronic inflammatory skin disease affecting about 2-4% of the population worldwide, and is thought to be a multifactorial disease with both genetic and immunogenic backgrounds. Psoriasis occurs in connection with stress and mood disorders and is apparently induced in patients who have been treated with antidepressants. The serotonergic system, which consists of serotonin-producing cells, serotonin receptors and serotonin transporters, may play a significant role in psoriasis.

Theanine, a component of green tea and black tea, has been shown to increase BDNF levels, modulate serotonin and dopamine levels, and improve learning and memory. It has shown promise as an adjunct therapy for schizophrenia and depression, and researchers believe there may also be an application for anxiety disorders, panic disorder, OCD, and bipolar disorder.

Vagus nerve stimulation may be a promising add-on treatment for anxiety, depression, PTSD, seizures, and inflammatory bowel disease. Natural ways to stimulate the vagus nerve and increase vagal tone include singing, deep breathing, meditation and yoga. Another way is to make a dietary shift towards good gut bacteria, shown to influence the activity of the vagus nerve.

In human volunteers as well as in a rat model, administration of a probiotic formulation consisting of Lactobacillus helveticus R0052 (traditionally used in the manufacture of Swiss-type cheeses and long-ripened Italian cheeses such as Emmental, Gruyere, Grana Padano and Parmigiano Reggiano) and Bifidobacterium longum R0175A (colonizes at birth, but levels vary genetically) significantly attenuated psychological distress and reduced anxiety-like behavior. Research has also found that prebiotics can improve non-REM sleep as well as REM sleep after a stressful event.

One pilot study found that a 12-week moderate intensity aerobic exercise program reduced OCD symptoms and the reductions lasted 6 months later.

Another study combined cognitive behavioral therapy and a 12-week moderate intensity aerobic exercise program with

tremendous results, exceeding effects typically observed with individual and group-based cognitive behavioral therapy for OCD based on leading meta-analytic reviews.

# Dopamine, Adrenaline and Estrogen-COMT

Below is a summary of your most significant variant genotypes:

| GENE              | GENOTYPE        |
|-------------------|-----------------|
| COMT V158M rs4680 | Heterozygous AG |
| COMT rs4633       | Heterozygous CT |

#### Recap



Improves COMT Gene Function: Vitamin C, magnesium, and copper (copper should not be too low or too high).



Decreases Gene Function: Chronic stress, sugar, proton pump inhibitors, aspartame, low magnesium levels, low vitamin C levels, low and high copper levels, constipation, xenoestrogens, high homocysteine levels, high SAH levels, estrogen-based medications and mercury toxicity.

#### DOPAMINE, ADRENALINE AND ESTROGEN-COMT

**Research**: COMT (catecholamine methyltransferase) shares a pathway with MAO-A and is the gene for dopamine, estrogen, adrenaline and catecholamine metabolism. This pathway requires magnesium, vitamin C and copper as co-factors.

Studies have found that the AG allele in COMT V158M (rs4680) results in an intermediate enzymatic function, while the wild type GG has fast activity, and the AA homozygous genotype has 4-5 times lower COMT activity. This means that dopamine and adrenaline levels should be more level in the AG genotype. However, multiple studies have shown that the AG genotype may fall on the higher end of the dopamine spectrum with cognitive tests.

Research has shown that individuals carrying the A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and for the COMT H62H rs4633 gene, the homozygous TT and heterozygous TC carriers had higher insight problem-solving scores than those with wild-type CC genotype.

A small study found that Caucasian carriers of at least one G allele showed a greater effect for social facilitation and cooperativeness (working together in a group) than the AA homozygous group for COMT V158M.

There are both benefits and detrimental aspects to variants in COMT. The downside of the A allele in COMT V158 is that the body overreacts to stress and pressure that can lead to anxiety, depression, impulsiveness, obsessive behavior, irritability, ADHD and abnormal behavior. It can also create a sensitivity to a higher intake of catecholamines (coffee, black tea, green tea, red wine, chocolate), especially in a stressed state, leading to high dopamine and adrenaline levels making the stress response worse. However, green tea has been found to be beneficial for breast cancer prevention in the AG and AA genotype because these individuals retained the polyphenols the longest. Other genetic variants involved in dopamine transport and receptor function also influence this magnitude.

Having a heterozygous variant in COMT V158M may increase your need for magnesium, vitamin C, and healthy copper levels (not too high or low). Compound weight lifting (squats, bench press, deadlift), sprints, and chopping wood can assist a slow COMT enzyme by increasing testosterone levels, which speed up the pathway and lower the stress response. Supplementation of magnesium and vitamin C may be essential to modulate COMT due to low magnesium levels in the water and soil, or lack of freshly picked fruits and vegetables for vitamin C, and chronic stress levels.

#### Histamines and Hyperactivity-HNMT

| GENE           | GENOTYPE     |
|----------------|--------------|
| HNMT rs1050891 | Wild Type AA |

# Recap



Improves HNMT Gene Function: Vitamin C, choline, folate and magnesium, chamomile, basil, stinging nettle, echinacea, fennel, ginger and wild oregano



Decreases HNMT Gene Function: Food dyes, poor gut flora, gluten sensitivity, too many fermented foods, sodium benzoate, and deficiencies in vitamin C, choline, folate and magnesium.

#### HISTAMINES AND HYPERACTIVITY-HNMT

**Research**: HNMT stands for histamine methyltransferase. HNMT is the primary enzyme responsible for histamine metabolism in the brain. Dysfunction of the histaminergic nervous system is associated with various neuropsychiatric disorders including narcolepsy, Alzhemer's disease, Tourette's syndrome, eating disorders, and depression.

This gene requires adequate methyl donors from methionine and choline. If you do not have enough methyl groups available, you may be more prone to high histamine levels. HNMT polymorphisms differ considerably between Chinese and American populations.

In a 2019 mice study, results demonstrated that HNMT played an essential role in regulating brain histamine concentration, controlling aggression and sleep—wake cycles. HNMT disruption did not affect histamine concentration of the skin and stomach.

In children with ADHD, the adverse effect of food dyes and sodium benzoate on ADHD symptoms was determined by histamine degradation in the rs1050891 AA HNMT polymorphism. Histamine is lowered by vitamin C, choline, folate, magnesium, chamomile, basil, stinging nettle, echinacea, fennel, ginger and wild oregano.

#### **Brain Health-PEMT**

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE      |
|-----------------|---------------|
| PEMT rs7946     | Homozygous TT |
| PEMT rs12325817 | Homozygous GG |

## Recap



Improves PEMT Gene Function: Choline, vitamin C, and estrogen.



Decreases Gene Function: Nighttime pain relievers, antihistamines, sleep aids, antidepressants, incontinence drugs and narcotic pain relievers.

#### **BRAIN HEALTH-PEMT**

**Research**: Choline is required for acetylcholine, a neurotransmitter of the vagus nerve that innervates multiple organs including the lungs, heart, liver, stomach, ovaries, and temporal lobe of the brain. A deficiency could affect all of these, especially memory. Acetylcholine also plays a role in promoting REM sleep.

Having one or more T alleles at rs7946 is associated with having lower phosphatidylcholine production in the liver.

Eighty percent of the women who were homozygous for the rs12325817 SNP manifested signs of choline depletion (liver or muscle dysfunction), relative to 43% of subjects carrying one copy of the variant allele and 13% of subjects without the SNP.

Vitamin C has been shown to induce the release of acetylcholine from synaptic vesicles of neurons and increase acetylcholine levels in the brain.

Possible drugs that can cause memory loss include antidepressants, antihistamines, anti-anxiety medications, anti-seizure drugs, muscle relaxants, tranquilizers, sleeping pills, and pain medications given after surgery. Why? The majority of these are in a class called anticholinergic drugs and block acetylcholine.

A French study looking at 4,128 women and 2,784 men that reported taking anticholinergic drugs showed a greater decline over four years in verbal fluency scores and in global cognitive functioning than women not using anticholinergic drugs. In men, an association was found with a decline in visual memory and to a lesser extent in executive function. Significant interactions were observed in women between anticholinergic use and age, APOE genotype, or hormone replacement therapy. A significantly 1.4–2 fold higher risk of cognitive decline was observed for continuous anticholinergic users.

These drugs could be especially theoretically problematic for those with poor PEMT function, low estrogen (in women) and a family history of dementia and Alzheimer's disease.

Research shows that only 15% of women get enough choline, and one study found that those with lowest choline have the highest anxiety.

#### Panic and PTSD-GAD1

Below is a summary of your most significant variant genotypes:

| GENE           | GENOTYPE        |
|----------------|-----------------|
| GAD1 rs3749034 | Heterozygous AG |

# Recap



Probiotics, B6, B2, taurine, magnesium, lithium, choline, vitamin C, zinc, vitamin D, progesterone (women), CBD, lemon balm, ashwagandha, high intensity exercise for 8-20 minutes, endurance exercise, yoga, meditation, and deep sleep.



Antibiotics, caffeine, high estrogen, excess wheat, excess sugar, broth cooked over 24 hours, low blood sugar, poor sleep, manganese deficiency, boron deficiency, chronic stress, proton pump inhibitors, diuretics, hormone replacement therapy, MAOI's, fibrates, MSG, low progesterone, sucralose and aspartame.

# PANIC AND PTSD-GAD1

GAD1 stands for "Glutamate Decarboxylase 1" and is responsible for the conversion of glutamate to GABA. GABA and glutamate account for 80% of brain activity. Glutamate is excitatory while GABA is calming. In the right amounts, glutamate helps focus, cognitive function and productivity. Too much, however, can be excitatory and detrimental.

The GAD system influences mood stability and the pathophysiology of mood and anxiety disorders. To date, GAD1 genetic variants have been associated with mood disturbance, and panic disorder. GAD1 SNPs may impact both mood and anxiety-like traits, and may also be relevant following stress or trauma exposure in influencing risk for PTSD as well as depression.

The subjects carrying A allele of rs3749034 were associated with an increased risk of Posttraumatic stress disorder when compared to subjects with the "G" allele in the dominant model.

GABA levels in various brain regions are reduced in panic patients possibly due to impaired GAD function. Further studies in patients with major depression found reduced GABA levels to be accompanied by increased glutamate concentrations strengthening the link between anxiety and mood disorders and GAD.

Following a trauma, individuals at higher genetic risk with certain genotypes in GAD1 may experience physiological effects of anxiety, overconsolidation of the fear memory, and negative thoughts about the event, decreasing their ability to extinguish fear responses when reminded of the trauma and increasing the likelihood of mood-related disturbances. Therefore the correlation with a genetic predisposition to a higher trauma response may require variants in GAD1, an environmental trauma, and gender to due the influence of estrogen on GAD.

Estrogen and progesterone decrease GAD expression in the amygdala and the hippocampus (which both are involved in

regulating fear), which provides a link between hormone levels and anxiety as well as mood changes during menstruation in women. Natural progesterone in women (B6 helps produce progesterone) has powerful effects on enhancing GABA activity in the brain. When progesterone is too low, it causes elevated glutamate levels.

Abnormalities in the GABA neurotransmitter system have been noted in subjects with mood and anxiety disorders, which is why anticonvulsants are also marketed for mood disorders. Lithium and the drug Lamictal has been shown to help regulate the neurotransmitter glutamate by keeping the amount of glutamate between brain cells at a stable, healthy level. The anticonvulsant drug Topamax is used for migraines by lowering glutamate and raising GABA levels.

Excess glutamate is supposed to convert to GABA with B6 and magnesium. GAD1 variants slow down the conversion of glutamate to GABA and increase the need for B6/magnesium to make it run normally. Studies have found that exercise helps the brain direct excess glutamate to be used as an energy source and prevent toxic build-up.

GABA requires adequate probiotics (bifidobacterium produces large amounts of GABA, so the FUT2 gene function should also be assessed) zinc, B2, B6, vitamin C, vitamin D and deep sleep to keep glutamate in check. Taurine (found in grass-fed animal protein, wild fish and eggs) appears to increase the levels of GAD1 to reduce glutamate and help bind to GABA receptors in brain cells.

One study found that neuronal excitability from glutamate appears to be attenuated when eating or supplementing with the mushroom Lion's Mane. Research on Lion's Mane also shows that the hot water extract stimulates Nerve Growth Factor (part of a family of similar proteins that serve to promote the health and normal function of the brain and nervous system) and accelerates the growth of the myelin sheath. This has exciting potential for those with neurodegenerative disorders from high glutamate levels.

The artificial sweetener aspartame is especially troubling for those with GABA and glutamate imbalances. The lowered levels of serotonin due to aspartame consumption might cause lowered activity of the GABA transporters.

#### Glutamate-BDNF

Below is a summary of your most significant variant genotypes:

| GENE        | GENOTYPE        |
|-------------|-----------------|
| BDNF rs6265 | Heterozygous CT |

#### Recap



Improves BDNF Gene Function: Running, DHA, milk thistle, green tea, low glycemic diet, normal levels of glutamate, lithium, acetylcholine, sunlight and heat exposure, bifidobacterium longum, intermittent fasting, turmeric, testosterone and estradiol (women).



# GLUTAMATE-BDNF

**Research**: BDNF (brain-derived neurotrophic factor) is the most important protein abundantly expressed in brain functions related to repair, spatial learning, episodic memory, and adaptability.

BDNF is a synaptic modulator of glutamate while GABA synapses are also regulated by BDNF. Therefore, BDNF regulates glutamate release and regulates glutamate receptor function. Chronic stress leads to decreased BDNF expression in the hippocampus, leading to enhanced anxiety-related behaviors.

There is building evidence that shows impaired glutamate synapses where compromised BDNF function has been observed such as Alzheimer's, Parkinson's, Huntington's disease, depression, bipolar disorder, migraines, and anxiety with the BDNF polymorphism Val66Met. It should be noted that a 2015 meta-analysis did not find a correlation with BDNF val66met and Alzheimer's disease.

BDNF is present in many regions of the central nervous system, including the hippocampus, cerebral cortex, cerebellum, hypothalamus, substantia nigra, amygdala, and spinal cord. The CT and TT genotypes have lower secretion and blood levels of

BDNF and research suggests that upregulating BDNF-activated pathways may be therapeutically relevant.

Evidence suggests that a decrease in hippocampal BDNF may account for the cognitive deficits and the impairment of memory in depression and anxiety disorders. Another study with depressed patients with BDNF polymorphisms found that the individuals with heterozygous or homozygous genotypes were significantly associated with an increased risk of suicidal behavior.

A 2012 and 2017 study found that episodic memory improves as maximal oxygen capacity increases. Aerobic activity induces a structural change in hippocampal volume and vasculature, responsible for episodic memory. It is the hippocampus that displays dramatic volume changes in disease states such as Alzheimer's disease and depression.

Mice studies have shown that the hormone irisin is generated by the muscles during endurance exercise and is responsible for producing BDNF. Further research has found that running produces a higher level of neurogenesis compared to resistance training and high-intensity training.

Exercise has been shown to cause a rise in serum BDNF and is especially enhanced in the heat. Since permeability of the blood-brain barrier increases with exercise in the heat, the hypothesis was raised that this causes a higher cerebral output of BDNF.

Research also found that BDNF levels are equally decreased in bipolar disorder during the occurrence of manic and depressive episodes. An interesting connection here is that when glutamate plummets, depression occurs. When glutamate spikes, mania occurs. If BDNF is suppressed, glutamate modulation is compromised.

An example of low glutamate can be seen in female patients with depression that have been found to have abnormally high expression levels of many genes that regulate the glutamate system. Recent studies found that a low dose of the drug ketamine, which alters glutamate system activity, can rapidly eliminate depression in two-thirds of patients who do not respond to conventional antidepressants. Conventional antidepressants target the monoamine (MAO) systems, which secrete the neurotransmitters dopamine, serotonin or norepinephrine.

In a 2017 study of 458 soldiers, those with the BDNF Met/Met genotype (homozygous TT), 57.9 percent had a history of one or more prior concussions, compared with 35.6 percent of those with other BDNF genotypes. Those with the BDNF Met/Met genotype also reported greater aggression and hostile personality characteristics. When combined in a predictive model, prior military deployments, being male, and having the BDNF Met/Met genotype were independently associated with an increased lifetime history of concussions in active-duty soldiers.

Low levels of BDNF have been shown in research to cause impaired glucose metabolism, highlighting the blood sugar connection of Type 2 diabetes to dementia and depression in epidemiological studies. Other studies have found high BDNF levels in those who already have Type 2 diabetes, with researchers hypothesizing that BDNF tries to overcompensate to reduce insulin and glucose levels, as has been found when BDNF is injected into diabetic rats.

When reviewing your genetic analysis, it is important to also look at the genes 5-HT2A, PEMT, CYP2R1, APOE, GAD1, SLC17A7, TCF7L2, FADS1, FADS2 and TCN2 to see how BDNF is most affected, and where you need to focus most nutritionally.

#### Cholesterol-APOE

| GENE          | GENOTYPE        |
|---------------|-----------------|
| APOE rs429358 | Heterozygous CT |
| APOE rs7412   | Homozygous CC   |



Increases Gene Expression: Higher level of exercise, 7-8 hours of sleep per night, fasting 13-16 hours between dinner and breakfast, B-vitamins, omega-3 fatty acids, selenium, polyphenols, vitamin E, ashwaqandha and lithium.



Decreases Gene Function: A high carbohydrate and sugar diet, smoking, high mercury or copper levels, chronic stress, elevated glucose, insulin resistance, traumatic brain injuries, high oxidative stress, air pollution, lithium deficiency and low glutathione peroxidase (GPX gene) activity.

#### **CHOLESTEROL-APOE**

**Research**: APOE is a cholesterol transporter and functions as a key regulator to coordinate the mobilization of cholesterol between cells and remove toxins. These functions are particularly critical for the nervous system where the APOE transport of cholesterol is critical for maintenance of brain neurons.

While over 60% of persons with Alzheimer's disease harbor at least one APOE-e4 allele, it has been recommended that the APOE-e4 test not be used for the prediction of Alzheimer disease risk because there are many other epigenetic factors at play.

The risk of cognitive decline conferred by carrying the E4 allele is greater among individuals from northern Europe. It is recommended that you look at ACSL1, TCF72, PEMT, CAT, SOD2, GPX, SHBG, MTHFR, FUT2 and GAD1 genes in the Nutrition Genome Report for a more comprehensive perspective on the pathways associated with Alzheimer's disease.

APOE evolved from the common hominid ancestor of humans and the great apes. While there are three main isoforms of APOE in humans (e2, e3, and e4), all great apes carry the APOE-e4 allele. The e4 genotype is found today in 15% of individuals. The E3 allele (found in 78% of people) is the most common in humans, especially in regions with a long-established agricultural economy. The ancestral E4 allele remains high in regions where an economy of foraging still exists or where food-supply is often scarce.

APOE-e4 may serve as an interesting example of antagonistic pleiotropy, a gene that confers an advantage in one period of life but later presents as a disadvantage. During the hunter-gatherer era, APOE-e4 appeared beneficial in protecting against miscarriage, stillbirth and certain infectious diseases evoked by both viruses and bacteria. The trade-off, however, was decreased injury repair to the brain and the symptoms likely didn't occur during the hunter-gatherer era due to a shorter life span. So it makes more sense for our species to select APOE-e4 because early life survival was a bigger threat. APOE-e4 carriers have also been shown to exhibit cognitive benefits earlier in life and higher intestinal absorption of dietary vitamin D and calcium, promoting stronger bones.

The predominance of this genotype during the hunter-gatherer era also gives a clue into the optimal diet for those with the APOE-e4 genotype. Much of the Paleolithic period would have had few grains and zero dairy, and hunter gatherers would have experienced longer fasting times. A high carbohydrate diet from grains would appear to be most problematic for this genotype. The amount and type of fat best for the E3/E4 and E4/E4 genotype is currently debated, however high amounts of saturated fats appear problematic. It is recommended you look at your fat metabolism genes in this report to determine fat intake.

Postmenopausal women constitute more than 60% of the affected Alzheimer population. A study from Nature found an increased risk for global cognitive decline and all-cause dementia respectively by 81% and 92% for older women breathing air that is heavily polluted by vehicle exhaust and other sources of fine particulates. The cognitive effects of air pollution are dramatically more pronounced in those with the APOE-e4 genotype.

The evidence is accumulating that oxidative stress and mitochondrial function is affected in APOE-e4 genotypes. Compared to the APOE-e2 and APOE-e3, APOE-e4 was also less effective in protecting cells from oxidative toxicity. Alzheimer's patients with the E4 allele show higher levels of hydroxyl radicals than Alzheimer's patients without an E4 allele and reduced levels of glutathione peroxidase, an enzyme with antioxidant capacity that is produced in the mitochondria. One study found that APOE has also been shown to induce the PON1 gene activity, and lower PON1 levels were observed in presence of APOE-e4. If your PON1 and GPX gene are also heterozygous or homozygous, focus should be on improving GPX function and PON1 to protect against LDL oxidation.

Research from the Buck Institute group found that APOE-e4 reduced expression of the antiaging protein, sirtuin 1 (SIRTI). The reduced expression of SIRTI was thought to impair beta-amyloid clearance observed in Alzheimer's. Further research determined that APOE-e4 bound to promoters of 1,700 genes that APOE-e3 did not, of which 76 are believed to be connected to Alzheimer's. In addition to SIRTI, APOE-e4 appears to repress two anti-inflammatory genes and one antiapoptotic gene. It would appear then that polyphenol activators of SIRT-1 that contain anti-inflammatory and apoptosis properties should be a priority. Polyphenols in food that stimulate the sirtuin genes include: piceatannol (metabolite of resveratrol), fisetin (strawberries, apples, grapes), quercetin (wine, peppers, berries, apples) and resveratrol (wine, blackberries, blueberries, pistachios, dark chocolate).

00

Increasing evidence has shown that APOE-e4 genotype is associated with poorer outcomes following traumatic brain injury

(TBI), likely due to the reduced ability to repair synapses and protect neurons from injury. TBI's are associated with increased risk of Alzheimer's disease, and therefore the E4 genotype may be used to know your risk factors for certain sports or activities with a higher percentage of head injuries.

Amyloid plaques are the sticky buildup of proteins that accumulate outside nerve cells. While the cause is currently unknown, the protein divides improperly in Alzheimer's disease, creating a form called beta amyloid which is toxic to neurons in the brain. The current theory is that the APOE-e4 genotype shows a reduced clearance of beta amyloid. The removal of beta amyloid occurs during sleep, making eight hours of sleep per night critical.

According to a lecture given by Dr. Frank Longo at Stanford University, all of the research shows that 30 minutes of exercise a day for 5 days a week is the most effective exercise plan to reduce the risk of Alzheimer's disease by 40%. The most fascinating part? Exercise put those with the APOE-e4 variant and those without the e4 variant at almost the exact same level of beta-amyloid accumulation. Meanwhile, those with an e4 variant that didn't exercise had the highest beta-amyloid levels.

Researchers have demonstrated that when ashwagandha was added to ß-amyloid treated samples, the toxic effects were neutralized and ashwagandha root extract was neuroprotective against ß-amyloid induced neuropathogenesis. Researchers have also found that continued lithium treatment was associated with a reduction of the rate of dementia to the same level as that for the general population and can actually be neuroprotective or even enhance the growth of neurons.

Knowing if you are APOE-e4 appears to be useful as part of the whole genetic blueprint in determining dietary and exercise needs to prevent Alzheimer's if it runs in your family. Many individuals with the APOE-e4 allele never develop the disease and many patients with Alzheimer's disease do not have the APOE-e4 allele. Case studies have shown tremendous progress with diet, exercise and lifestyle changes for slowing and even reversing symptoms.

| Gene & Gene Function                                                                                                                                                                                                                                                                    | Gene Rsid     | Wild Type | Heterozygous | Homozygous |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--------------|------------|
| MAO-A  MAO-A (Monoamine oxidase A) is a critical enzyme involved in breaking down important neurotransmitters such as serotonin, estrogen, norepinephrine, and dopamine.                                                                                                                | MAO-A-rs6323  | TT        |              |            |
| 5-HT2A  The 5-HT2A gene encodes for serotonin receptors found in the brain and central nervous system and is concentrated in the brain region essential for learning and cognition.  Polymorphisms in rs6314 may result in reduced episodic memory in young and middleaged individuals. | 5-HT2A-rs6314 | GG        |              |            |
| 5-HT2A  The 5-HT2A gene encodes for serotonin receptors found in the central nervous system.  Polymorphisms in rs6311 and                                                                                                                                                               | 5-HT2A-rs6311 |           | СТ           |            |
| rs6313 may contribute to a<br>reduced capacity to regulate<br>stress, low vagal tone, anxiety,<br>depression, OCD, and IBS,<br>especially in females.                                                                                                                                   | 5-HT2A-rs6313 |           | AG           |            |

| Gene & Gene Function                                                                                                                                          | Gene Rsid                 | Wild Type | Heterozygous | Homozygous |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------------|
| COMT V158M COMT is connected to dopamine, adrenaline,                                                                                                         | COMT V158M-<br>rs4680     |           | AG           |            |
| estrogen and catecholamine metabolism.                                                                                                                        | COMT-rs4633               |           | СТ           |            |
| ANKK1  ANKK1 modulates the density of dopamine receptors in the brain.                                                                                        | ANKK1-rs1800497           | GG        |              |            |
| DAO C2029G  DAO participates in the degradation of extracellular histamine. This gene is connected to migraines.                                              | DAO C2029G-<br>rs1049793  | СС        |              |            |
| HNMT C314T Histamine N- methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. This gene is connected to migraines.              | HNMT C314T-<br>rs11558538 | CC        |              |            |
| HNMT  Histamine N- methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. This gene is connected to hyperactivity and food dyes. | HNMT-rs1050891            | AA        |              |            |
| FAAH FAAH (fatty acid amide hydrolase) is a gene that encodes for anandamide breakdown, a neurotransmitter and endogenous cannabinoid.                        | FAAH-rs324420             |           | AC           |            |
| PEMT Choline is required for acetylcholine, a                                                                                                                 | PEMT-rs7946               |           |              | тт         |
| neurotransmitter of the vagus<br>nerve that enervates<br>numerous organs.                                                                                     | PEMT-rs12325817           |           |              | GG         |

| Gene & Gene Function                                                                                                                                                                                                          | Gene Rsid              | Wild Type | Heterozygous | Homozygous |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|--------------|------------|
| GAD1 GAD1 stands for "Glutamate Decarboxylase 1" and is responsible for the conversion of glutamate to GABA.                                                                                                                  | GAD1-rs3749034         |           | AG           |            |
| BDNF BDNF is a synaptic modulator of glutamate while GABA synapses are also regulated by BDNF.                                                                                                                                | BDNF-rs6265            |           | СТ           |            |
| SLC17A7  SLC17A7 mediates the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells in the brain.  Polymorphisms are associated with delayed recovery time from head injuries. | SLC17A7-<br>rs74174284 | СС        |              |            |
| APOE Apolipoprotein E (APOE) is a lipid binding protein that                                                                                                                                                                  | APOE-rs429358          |           | СТ           |            |
| transports triglycerides and cholesterol in multiple tissues, including the brain.                                                                                                                                            | APOE-rs7412            |           |              | СС         |
|                                                                                                                                                                                                                               | GAD1-rs2241165         |           | СТ           |            |
| GAD1 GAD1 stands for "Glutamate Decarboxylase 1" and is responsible for the conversion of glutamate to GABA.                                                                                                                  | GAD1-rs769407          | GG        |              |            |
|                                                                                                                                                                                                                               | GAD1-rs3791851         | тт        |              |            |
|                                                                                                                                                                                                                               | GAD1-rs3791850         |           | AG           |            |

# MY CLINICAL RESEARCH SUMMARY: DETOXIFICATION

#### Liver Enzyme-CYP1A2

Below is a summary of your most significant variant genotypes:

| GENE                  | GENOTYPE        |
|-----------------------|-----------------|
| CYP1A2 C164A rs762551 | Heterozygous AC |

#### Recap



Improves CYP1A2 Gene Function: Unfiltered fermented drinks (Kombucha, beer, wine), hops, marinades, cruciferous vegetables, blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach.



Decreases CYP1A2 Gene Function: Heterocyclic amines, nitrosamines, aflatoxin B1, polycyclic aromatic hydrocarbons, dioxins, and \( \begin{array}{c} -naphthoflavone. Omeprazole and primaquine are inducers. Caffeine and Tylenol combined with these compounds can make the effect worse.

#### LIVER ENZYME-CYP1A2

**Research**: Approximately 200 polymorphisms exist in CYP1A2 gene region, with numerous studies focusing on rs762551. You have the heterozygous (AC) rs762551 genotype, which is the intermediate metabolizer.

The cytochromes P450 liver enzymes play an important role in the development of various cancers since they are involved in the metabolic transformation of numerous endogenous and exogenous compounds including carcinogens. CYP1A2 is a key factor in the metabolic activity of carcinogenic aromatic and heterocyclic amines, and researchers have found that the inhibition activity of this enzyme may represent a logical strategy for preventing the development of human cancers induced by the aromatic and heterocyclic amines. Further research has shown a cumulative value of phase I (CYP-450 enzymes) and phase II enzymes (GSTM1, GSTP1 and NAT2) in determining individual carcinogenic potential of compounds.

Heterocyclic amines (HCAs) are created by high heat reacting with the proteins. The way to reduce HCAs is to use marinades. Marinades reduce HCAs by up to 90 percent. For further protection, pair with cruciferous vegetables (especially fermented like sauerkraut) and an unfiltered beer or Kombucha due to the protection of the yeast. Red wine, blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach all inhibit the mutagenic activity of certain HCAs in vitro.

High antioxidant fruits, lemon juice, herbs, and spices help keep meat fresh and juicy while protecting against HCAs and reducing AGEs.

Grass-fed meat is higher in vitamin E, and in a study adding concentrations of vitamin E to the surface of ground beef reduced HCA production by 70%. Aim for medium to medium-rare for red meat, flip often and avoid burning. The darker the color the higher the HCA concentrations.

Nitrosamines are used in pesticides, created by frying meat, and from a conversion in the gut by nitrites from cured meats. Vitamin C prevents nitrites from becoming nitrosamines. Limit cured meat consumption using nitrites and take vitamin C when needed.

Aflatoxin B1 is the most common in food and amongst the most potent genotoxic and carcinogenic. It can occur in grain-fed milk, nuts/grains stored in hot conditions or bins, vegetable oils, cocoa or coffee beans stored in warm conditions, and dried fruit. We don't recommend Brazil nuts because they are prone to aflatoxin contamination. Choose nuts and seeds in sealed bags, preferably sprouted. You also want to minimize or avoid oats (unless tested free of ochratoxin). Low protein diets may increase the toxicity of aflatoxin and promote cancerous growth.

Hops in beer contain a flavonoid called xanthohumol, which strongly inhibits CYP1A2. Xanthohumol has anti-carcinogenic properties and has been found to scavenge reactive oxygen species, including hydroxyl- and peroxyl radicals, and to inhibit superoxide anion radical and harmful nitric oxide production.

# Liver Enzyme-CYP2D6

Below is a summary of your most significant variant genotypes:

| GENE                   | GENOTYPE        |
|------------------------|-----------------|
| CYP2D6 T100C rs1065852 | Heterozygous AG |

## Recap





#### LIVER ENZYME-CYP2D6

Research: Research has found that CYP2D6\*10 (rs1065852) variants result in decreased enzymatic activity. The polymorphism of CYP2D6 significantly affects the pharmacokinetics of about 50% of the drugs in clinical use, which are CYP2D6 substrates. Approximately 7% of the population has reduced activity of the CYP2D6 isoenzyme of cytochrome P450. These individuals are "poor metabolizers." Please discuss further with your doctor and look into further testing for a full CYP2D6 pharmacogenomic panel.

#### **Aromatic Amines-NAT2**

Below is a summary of your most significant variant genotypes:

| GENE           | GENOTYPE      |
|----------------|---------------|
| NAT2 rs1495741 | Homozygous AA |

# Recap



Improves NAT2 Gene Function: Cruciferous vegetables, unfiltered fermented drinks, meat and fish marinades, blueberries, blackberries, red grapes, kiwi, watermelon, rosemary, parsley, carotenoids, and vitamin C.



Decreases NAT2 Gene Function: Smoking, commercial hair dyes, industrial and manufacturing plants, charred meat, and diesel exhaust.

# AROMATIC AMINES-NAT2

**Research**: N-acetyltransferase 2 (NAT2) could influence the detoxification of numerous drugs, and chemical carcinogens including aromatic amines. Aromatic amines are chemicals found in industrial and manufacturing plants, tobacco smoke, commercial hair dyes, and diesel exhaust.

Generally, the NAT2 phenotype can be classified into slow, intermediate, and rapid acetylator. The AA genotype is the slow acetylator, and numerous studies have associated the NAT2 slow acetylator phenotype with bladder cancer risk in smokers found in America, Europe, and Asia. However, in nonsmokers, rs1495741 AA did not increase susceptibility to bladder cancer when compared to GG and AG genotypes.

Exposure to aromatic amines has been found to increase the risk of breast cancer in those that work in rubber factories, use hair dyes that contain 4-aminobiphenyl (which also affects Tp53), and consistently consumed meat cooked at high temperatures. Research has shown the aromatic amine formed with meat cooked at high temperatures may cause both DNA damage and cause the proliferation of estrogen-sensitive cancer cells.

Heterocyclic aromatic amines, known mutagens formed in cooked meat and fish at high temperatures, are considered the causative agents for the association between meat intake and prostate cancer risk. Researchers found that a high heterocyclic aromatic amine intake was significantly associated with an increased risk of prostate cancer among Japanese men with the

100

Marinades, cruciferous vegetables, unfiltered fermented drinks, blueberries, blackberries, red grapes, kiwi, watermelon, rosemary, and parsley all help reduce the carcinogenic risk posed by heterocyclic amines in meat cooked at high temperatures.

| Gene & Gene Function                                                                                                                                                                        | Gene Rsid                     | Wild Type | Heterozygous | Homozygous |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|--------------|------------|
| CYP1A1*2C 4889 CYP1A1 is in the estrogen metabolism pathway along with CYP1B1, CYP1A2, CYP31A, SULT's and COMT. CYP1A1 is involved in the metabolism of benzopyrene.                        | CYP1A1*2C 4889-<br>rs1048943  | π         |              |            |
| CYP1A2 C164A CYP1A2 metabolizes various environmental procarcinogens, such as heterocyclic amines, nitrosamines, aflatoxin B1 and ochratoxin A.                                             | CYP1A2 C164A-<br>rs762551     |           | AC           |            |
| CYP1B1*6 L432V  The CYP1B1 gene metabolizes pro-carcinogens such as polycyclic aromatic hydrocarbons and 17 beta-estradiol.                                                                 | CYP1B1*6 L432V-<br>rs1056836  |           | CG           |            |
| CYP2C9*3 A1075C  Variants in CYP2C9 rs1057910  may alter the metabolism of THC, the psychoactive compound found in cannabis.                                                                | CYP2C9*3 A1075C-<br>rs1057910 | АА        |              |            |
| CYP2D6 T100C CYP2D6 metabolizes approximately 50% of drugs in clinical use.                                                                                                                 | CYP2D6 T100C-<br>rs1065852    |           | AG           |            |
| CYP2E1  Research has identified CYP2E1 as the primary P450 isozyme responsible for benzene metabolism at low concentrations, acrylamide to glycidamide, alcohol, Tylenol, and nitrosamines. | CYP2E1-rs2031920              | СС        |              |            |

| Gene & Gene Function                                                                                                                                                                   | Gene Rsid                 | Wild Type | Heterozygous | Homozygous |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------------|
| CYP3A4*1B  The CYP3A4 enzyme is involved in the metabolism of approximately 50% of drugs that are used today, cholesterol homeostasis, and the oxidative deactivation of testosterone. | CYP3A4*1B-<br>rs2740574   | ТТ        |              |            |
| CYP2C19*17  Genetic variability impacts expression and activity of CYP2C19 and therefore can influence drug metabolism and catabolism of estrogens.                                    | CYP2C19*17-<br>rs12248560 | СС        |              |            |
| VKORC1*2  Variants in VOKRC1*2 may increase the need for vitamin K2 and a sensitivity to dosing of the drug Warfarin.                                                                  | VKORC1*2-<br>rs9923231    | СС        |              |            |
| NAT2 The NAT2 gene encodes an enzyme that functions to activate and deactivate arylamine, hydrazine drugs, and carcinogens.                                                            | NAT2-rs1495741            |           |              | AA         |
| COQ2  The COQ2 gene encodes an enzyme that functions in the final steps in the biosynthesis of CoQ10 and homozygous variants may increase the risk of statin induced myopathy.         | COQ2-rs4693596            |           | СТ           |            |
| CYP17A2                                                                                                                                                                                | CYP17A2-rs743572          |           | AG           |            |

# MY CLINICAL RESEARCH SUMMARY: IMMUNE SUPPORT,

# ANTIOXIDANTS AND INFLAMMATION

#### Cell Protection-SOD2

Below is a summary of your most significant variant genotypes:

| GENE        | GENOTYPE        |
|-------------|-----------------|
| SOD2 rs4880 | Heterozygous AG |

#### Recap



Improves SOD2 Gene Function: Manganese, boron, vitamin A, C, E, omega-3 fatty acids, CoQ10, lutein, lycopene, milk thistle, cordyceps, holy basil, reishi and cryotherapy.



Decreases SOD2 Gene Function: Glyphosate, fluoridated water, chronic stress, poor sleep, shallow breathing, high iron levels and food dyes.

#### **CELL PROTECTION-SOD2**

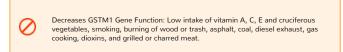
**Research**: SOD2 is superoxide dismutase, which protects against the inflammatory superoxide inside the cell for the mitochondria (power house of the cell). SOD2 is manganese dependent, and adequate intake is important. Manganese is crucial for heart health, blood sugar, male fertility, bone health and protecting the brain against glutamate toxicity.

Exercise also helps improve SOD2 activity. Studies show exercise intensity can reduce cardiac arrhythmias and myocardial infarction due to improved SOD2 function.

Glutathione level and activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase) have been found to be increased in yoga practitioners. One year of Tai Chi training has been reported to promote superoxide dismutase activity and lessen lipid peroxidation.

One study found that young men exposed to cryotherapy for 3 minutes at -202°F (-130°C) everyday for 20 days doubled the activity of one the antioxidant enzyme glutathione reductase, and increased superoxide dismutase by 43%.

Chronic stress, poor sleep, shallow breathing and food dye consumption are examples of ways intracellular inflammation can occur. Food dyes have been found to inhibit mitochondrial respiration; the ability of the powerhouse of your cells to convert nutrients to energy and food dyes are often used ironically in sports drinks and multivitamins.


Fluoride decreases SOD2 activity in studies, and 75% of the water in the U.S. is fluoridated compared to 3% of western Europe. Reverse osmosis systems remove fluoride from water.

Variants in SOD2 increase the need for manganese to protect the mitochondria and lactobacillus in the gut. Colitis has been linked to impaired SOD2 genes.

Vitamin, A, C, E, omega-3 fatty acids, cordyceps and reishi help protect mitochondria against intracellular superoxide in red blood cells.

# Glutathione-GSTM1

| GENE           | GENOTYPE     |
|----------------|--------------|
| GSTM1 rs366631 | Wild Type AA |



#### **GLUTATHIONE-GSTM1**

Research: GSTM1 rs366631 is a pseudo-SNP that can be used as a GSTM1 deletion marker. The deletion is also known as the null genotype and confers the absence of the GSTM1 protein. The frequency of the null genotype varies from 20% to 80%, depending on the ethnic group studied.

For example, the null genotype is less frequent in western and southern African populations, less frequent in South American populations, intermediate in the Japanese, but is higher in Egyptian, European, American, and Asian populations.

High frequencies of the GSTM1 null genotype have been found in patients with lung cancer (East Asians), breast cancer (over 50 age group and in Asians), bladder cancer (with NAT2 slow acetylator), colorectal cancer, skin cancer, gastric cancer (among Asians with H. Pylori), chronic bronchitis, kidney disease progression, acute myeloid leukemia, acute lymphoblastic leukaemia, head and neck cancer (combined with CYP1A1 variant), endometriosis, type 2 diabetes retinopathy, and recurrent pregnancy loss. All have been regarded as environmentally induced and the risk may change with ethnicity.

Of the major glutathione enzymes, GSTM1 appears to be the most effective at neutralizing cytotoxic and genotoxic reactive compounds. However, the research shows that the null genotype of GSTM1 on its own may not be able to determine carcinogen exposure cancer risk. Instead, a combination of genotypes in the other glutathione and antioxidant genes like GSTP1 and NFE2L2, detoxification genes like CYP1A1 and NAT2, and/or compounding epigenetic habits that appear to modify the effect.

GSTM1 catalyzes the detoxification of alkyl and polycyclic aromatic hydrocarbons, intermediate forms of many carcinogens, specifically metabolically generated epoxide intermediates of benzo(a)pyrene. Benzo(a)pyrene is part of a class of chemicals called polycyclic aromatic hydrocarbons. Sources of benzo(a)pyrene include the burning of wood or trash, tobacco smoke, asphalt, coal, diesel exhaust, and grilled or charred meat. There is evidence that it causes skin, lung, and bladder cancer in humans and in animals. Research has also shown that early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons.

A study also found sensitivity to gas cooking and the GSTM1 null genotype, increasing the sensitivity of the lungs to nitrogen dioxide. Nitrogen dioxide is also found in diesel exhaust. Exposure of human blood plasma to nitrogen dioxide caused rapid losses of ascorbic acid, uric acid, protein thiol groups, lipid peroxidation, and depletions of alpha-tocopherol, bilirubin, and ubiquinol leading to high levels of oxidative stress.

Animal studies and in vitro studies have shown that vitamin C, vitamin E, vitamin A, resveratrol, curcumin, green tea, and white tea can inhibit the carcinogenic effect of benzo(a)pyrene and nitrogen dioxide. In the Norwegian Mother and Child Cohort Study 50,651 women, a higher prenatal exposure to dietary benzo(a)pyrene was found to reduce birth weight. However, increasing dietary vitamin C intake during pregnancy helped reduce any adverse effects of benzo(a)pyrene on birth weight.

Isothiocyanates from cruciferous vegetables are known for their anti-cancer activity. They are stored as glucosinolates in cruciferous vegetables and are hydrolyzed by myrosinase (an enzyme found in plants and intestinal microflora) to form isothiocyanates. Isothiocyanates from cruciferous vegetables are substrates and inducers of GSTM1.

GSTM1 variants may alter isothiocyanates clearance, with the null genotype retaining higher levels of isothiocyanates and therefore the benefits. In numerous studies, the GSTM1 null genotype was the most responsive to cruciferous vegetables for anti-cancer effects against lung cancer, colon cancer, breast cancer, and kidney disease.

The isothiocyanate levels in cruciferous vegetables will range based on growing conditions including sulfur and nitrogen levels, time after harvest and storage (cold transportation and storage of broccoli also cause a loss of glucosinolates up to 70-80%), plant genetics, and cooking preparation. Broccoli sprouts will yield the highest isothiocyanate levels.

## Eye Health-CFH

| GENE          | GENOTYPE        |
|---------------|-----------------|
| CFH rs1061170 | Heterozygous CT |

#### Recap



Improves CFH Gene Function: Lutein, zeaxanthin, bilberry, lingonberry, vitamin C, vitamin E, DHA, and zinc.



Decreases CFH Gene Function: Smoking, pesticides, benzene (found in certain laundry detergents, gasoline and paint), aspartame, oxidative stress, elevated TNF-alpha, elevated IL-6, obesity, smoking, diabetes, hypertension, atherosclerosis and low intake of lutein and zeaxanthin.

#### EYE HEALTH-CFH

**Research**: Age related macular degeneration (AMD) is the leading cause of blindness in Western societies, but its etiology remains largely unknown.

Variants in CFH confers a 2-fold higher risk of late AMD per copy in individuals of European descent. Research indicates that CFH (rs1061170) polymorphism impacts significantly on retinal function in early AMD patients, and supports the hypothesis that a dysfunctional CFH might result in early retinal function loss due to a reduction in the immune antioxidant defense mechanism. A study from 2005 found that variants in CFH likely explains approximately 43% of AMD in older adults.

Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. In vivo studies in mice found CFH as a major MDA-binding protein that blocks MDA-modified proteins by macrophages and MDA-induced pro-inflammatory effects. The CFH polymorphism markedly reduces the ability of CFH to bind MDA, indicating a causal link to a cause of age related macular degeneration.

A recent meta-analysis found that the rates of myopia (nearsightedness) will increase 140% by 2050 due to our increased time in front of a screen. Myopia can increase the risk of numerous eye disorders. Blue light is a high-energy or short-wavelength visible light from your phone and computer that induces inflammation and retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Research has found that bilberry and lingonberry exert protective effects against blue LED light-induced retinal photoreceptor cell damage due to their polyphenol content.

Lutein and zeaxanthin can inhibit oxidation of cell membranes and may be protective against UV-induced eye damage. Studies have demonstrated that people in the highest quintile of intake of dietary carotenoids, especially lutein and zeaxanthin concentrations have significantly lower risk of macular degeneration. Blue-eyed adults have far less lutein and zeaxanthin in their retinas.

One study compared diets of 356 patients with macular degeneration with 520 patients with other eye diseases. The data revealed that beta carotene was not especially effective, but that lutein and zeaxanthin were. Another study found that the risk of macular degeneration was reduced 65 percent with high amounts of lutein and zeaxanthin.

Research has found that MDA levels are significantly increased in groups of subjects with deficient levels of vitamin C and vitamin E. Deficiency in these two antioxidants leads to insufficient defense against free radicals and increased MDA levels. Those with polymorphisms in CTH should increase vitamin C and vitamin E intake. In another study, the risk for macular degeneration was found to be 77% lower when vitamin C supplements and a low-glycemic diet was used.

One study followed 3,600 people ages 55-80 years old for six years and found that those that took antioxidants plus zinc were less likely than those who took only antioxidants or only zinc to lose their vision.

Studies show that people who consume more fish, which is rich in DHA-fish fat, are less likely to develop macular degeneration. Eating fish one to three times a week has been associated with a 40 to 75 percent reduction in macular degeneration.

| Gene & Gene Function                                                                                                                                                                                                                                                                                                          | Gene Rsid                | Wild Type | Heterozygous | Homozygous |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|--------------|------------|
| SOD2  Superoxide dismutase (SOD2) is manganese dependent and protects against superoxide for the mitochondria of the cell. Variants here increase the need for intracellular antioxidant protection.                                                                                                                          | SOD2-rs4880              |           | AG           |            |
| SOD3  Superoxide dismutase (SOD3) is zinc/copper dependent and protects against superoxide for the cell membrane. Variants here increase the need for intracellular and extracellular antioxidant protection.                                                                                                                 | SOD3-rs1799895           | CC        |              |            |
| CAT C-262T  CAT makes an enzyme called catalase, which helps reduce oxidative stress.                                                                                                                                                                                                                                         | CAT C-262T-<br>rs1001179 | СС        |              |            |
| GSTM1  GSTM1 catalyzes the detoxification of alkyl and polycyclic aromatic hydrocarbons (PAHs), intermediate forms of many carcinogens, specifically metabolically generated epoxide intermediates of benzo(a)pyrene.                                                                                                         | GSTM1-rs366631           | AA        |              |            |
| GSTP1 I105V  Glutathione S-Transferase (GSTP1) is linked to the metabolism of mutagens, carcinogens, and other poisonous chemicals. It plays a crucial role in the detoxification process, thereby protecting cells from these compounds. GSTP1 rs1695 is connected to breast, prostate, urinary, esophagus, and skin health. | GSTP1 I105V-<br>rs1695   | AA        |              |            |

| Gene & Gene Function                                                                                                                                                                                                                                                                                                        | Gene Rsid                 | Wild Type | Heterozygous | Homozygous |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------------|
| GSTP1 C341T  Glutathione S-Transferase (GSTP1) is linked to the metabolism of mutagens, carcinogens, and other poisonous chemicals. It plays a crucial role in the detoxification process, thereby protecting cells from these compounds. GSTP1 rs1138272 is connected to the colon, prostate, lung, throat, and fertility. | GSTP1 C341T-<br>rs1138272 | CC        |              |            |
| GPX1 The GPX1 (Glutathione peroxidase 1) gene encodes a protein responsible for the modulation and detoxification of hydroperoxides and hydrogen peroxide to protect the mitochondria and cytoplasm of cells against oxidative damage.                                                                                      | GPX1-rs1050450            | GG        |              |            |
| CTH The CTH (Cystathionine Gamma-Lyase) gene encodes an enzyme in the trans- sulfuration pathway that converts cystathionine derived from methionine into cysteine. Glutathione synthesis in the liver is dependent upon the availability of cysteine.                                                                      | CTH-rs1021737             |           | GT           |            |
| NOS1  NOS1 (nNOS) codes for brain neural transmission, memory, learning, psychological stress, the peripheral nervous system and potentially the lymph nodes.                                                                                                                                                               | NOS1-rs3782218            | СС        |              |            |
| NOS2 NOS2 (iNOS) encodes for wound, tissue damage, infection and hypoxia (low oxygen).                                                                                                                                                                                                                                      | NOS2-rs2248814            | GG        |              |            |

| Gene & Gene Function                                                                                                                          | Gene Rsid             | Wild Type | Heterozygous | Homozygous |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|--------------|------------|
| CFH CFH (complement factor H) polymorphism is associated with increased risk of age related macular degeneration.                             | CFH-rs1061170         |           | СТ           |            |
| ARMS2 ARMS2 polymorphism is associated with increased risk of age related macular degeneration (AMD).                                         | ARMS2-<br>rs10490924  | GG        |              |            |
| LZTFL1  The LZTFL1 gene influences the transition of specialized lung cells to less specialized lung cells during infection and inflammation. | LZTFL1-<br>rs17713054 | GG        |              |            |
| IL-10                                                                                                                                         | IL-10-rs1800871       |           |              | AA         |
| NQ01                                                                                                                                          | NQ01-rs1800566        | GG        |              |            |
| IL-10                                                                                                                                         | IL-10-rs1800872       |           |              | ТТ         |
| IL-10                                                                                                                                         | IL-10-rs1800896       |           |              | тт         |

# MY CLINICAL RESEARCH SUMMARY: DNA PROTECTION, DAMAGE & REPAIR

# Longevity-SIRT1

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE     |
|-----------------|--------------|
| SIRT1 rs7895833 | Wild Type AA |

### Recap



Improves SIRT1 Gene Function: Exercise, fasting, 7-8 hours of sleep per night, sauna, polyphenols, vitamin D, omega-3 fatty acids, resveratrol, magnesium, and melatonin.



### LONGEVITY-SIRT1

**Research**: SIRT1 regulates numerous genes that accelerate the aging process, modulate DNA repair mechanisms and transcription factors like p53 (tumor suppressor gene), FOXOs (key regulators of lipid metabolism, stress resistance, and apoptosis) and inhibits NF-kb, a pathway connected to viral inflammation.

SIRT1 activity goes down as we age, and DNA damage accumulates, and its activity is especially harmed by a sedentary lifestyle, poor diet, and obesity. Activation of sirtuins induces the growth of blood vessels, insulin sensitivity and better glucose control, and other health benefits in a wide range of age-related cardiovascular and metabolic disease models. Experimental models have shown that increasing the activity of the sirtuins is associated with the delay of age-related diseases and potentially increasing longevity.

Researchers have observed a significant increase in SIRT1 levels in longevity populations and found a significant positive correlation between SIRT1 levels and age in a Turkish population. The oldest people carrying AG genotypes for rs7895833 had the highest SIRT1 level compared to the AA genotype, suggesting an association between rs7895833 SNP and lifespan longevity.

The average age of older people carrying AG genotype (76.0  $\pm$  1.5 years) was significantly higher than the average age of older people carrying AA genotype (71.3  $\pm$  1.4 years).

Your APOE genotype may also affect SIRT1 activity for longevity. Research from the Buck Institute group found that APOE-e4 reduced expression of SIRT1. The reduced expression of SIRT1 was thought to impair beta-amyloid clearance observed in Alzheimer's. If you have the APOE-e4 allele, the AA SIRT1 genotype may require more SIRT1 activation.

Polyphenols are activators of SIRT1 and contain anti-inflammatory and apoptosis properties. These include piceatannol (a metabolite of resveratrol), olive oil, fisetin (strawberries, apples, grapes), quercetin (wine, peppers, berries, apples) and resveratrol (wine, blackberries, blueberries, pistachios and dark chocolate).

Other activators of SIRT1 that also benefit the APOE-e4 carriers include magnesium, melatonin, vitamin D, and omega-3 fatty acids. One study found that centenarians (those living over 100) have higher total body magnesium and lower calcium levels than most elderly people.

| Gene & Gene Function                                                                                                                                                                                     | Gene Rsid                | Wild Type | Heterozygous | Homozygous |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|--------------|------------|
| ATM D1853N ATM coordinates DNA repair by activating enzymes that fix double stranded DNA breaks.                                                                                                         | ATM D1853N-<br>rs1801516 | GG        |              |            |
| ESR2 ESR2 acts as a tumor suppressor gene that codes for estrogen receptor beta (ER-beta), one of two main types of estrogen receptor activated by estrogen. ESR2 is strongly expressed in the prostate. | ESR2-rs2987983           | AA        |              |            |
| TP53 TP53 is a tumor suppressor gene responsible for DNA repair.                                                                                                                                         | TP53-rs1042522           |           |              | СС         |
| MDM2 Variants in the MDM2 gene encode a protein that reduces cellular levels of the p53 tumor suppressor protein.                                                                                        | MDM2-rs2279744           | тт        |              |            |
| MLH1  MLH1 codes for a DNA repair enzyme linked to colon health.                                                                                                                                         | MLH1-rs1800734           |           | AG           |            |
| GATA3 GATA3 factors are involved in cellular maturation with proliferation arrest and cell survival.                                                                                                     | GATA3-rs4143094          | GG        |              |            |
| SIRT1  SIRT1 senses changes in intracellular NAD+ levels and plays a role in DNA damage and repair.                                                                                                      | SIRT1-rs7895833          | AA        |              |            |
| XRCC3  XRCC3 participates in DNA double-strand break/recombination repair.                                                                                                                               | XRCC3-rs861539           | GG        |              |            |

# MY CLINICAL RESEARCH SUMMARY: CARDIOVASCULAR HEALTH AND ATHLETIC PERFORMANCE

# Power and Recovery-ACTN3

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE     |
|-----------------|--------------|
| ACTN3 rs1815739 | Wild Type CC |

### Recap





### POWER AND RECOVERY-ACTN3

ACTN3 is currently the most promising gene for predicting the likelihood of becoming an Olympic level sprint and power athlete in males and females. The RR (CC) genotype expresses the ACTN3 protein found in Type II muscle fibers, which produces explosive and powerful contractions.

A 2019 meta-analysis of 44 studies and 20,753 individuals, found that the RR genotype is associated with enhanced strength and training adaptation, improved protection from eccentric training-induced muscle damage, and lower risk of sports injury, and reduced frailty in the elderly. Other research has shown that testosterone levels were higher in male and female athletes with at least one R allele compared to the XX genotypes.

Studies in both Ironman athletes and ultra runners found that the RR genotype experienced the least amount of muscle damage during and after the competition, reducing the risk of rhabdomyolysis and other health complications during ultra-endurance competitions. However, there was no difference in race time or perceived exertion between all three genotypes.

For resistance training, two studies reported that the RR genotype was associated with the most significant increase in strength and power following resistance training in men and women. Women with the RR genotype (compared to XX genotype carriers) had lower muscle leg power initially but had higher increases after strength training.

Numerous studies have shown that the RR genotype significantly reduced the risk of ankle injuries and that XX genotypes were 2.6 times more likely to suffer injuries than RR genotypes. These injuries were also more likely to be of increased severity.

A higher frequency of the ACTN3 RR genotype has been found in Olympic level sprint and power athletes (sprinters, jumpers, and throwers) in Australians, Finnish, Greek, Russian, African, Israeli and Japanese athletes. Researchers have found it is rare for humans with the XX genotype to qualify for the 200-meter and 400-meter competitions at the Olympic Games.

There was some evidence for a dose-effect of the ACTN3 R allele and 200-meter sprint speed in elite male African athletes. The ACTN3 RR individuals had (on average) a faster best personal sprint time than ACTN3 RX individuals.

The XX genotype for ACTN3 has a higher baseline VO2 max than the RR genotype. However, RR genotypes are hyperresponders to exercise, and the difference was eliminated with consistent endurance training according to a study on police recruits.

Below is a summary of your most significant variant genotypes:

| GENE               | GENOTYPE        |
|--------------------|-----------------|
| PPARGC1A rs8192678 | Heterozygous CT |

### Recap





### VO2 MAX-PPARGC1A

Research: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) is a master regulator of mitochondrial biogenesis, mitochondrial respiration, skeletal muscle fiber transformation (from fast to slow twitch), glucose and fatty acid metabolism, and the anti-oxidation machinery. PPARGC1A is expressed in cell types with high oxidative function (heart, skeletal muscle slow twitch fibers, liver, and pancreas) and in brown adipose tissue.

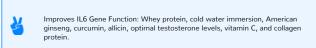
Several studies have shown that SNPs in PPARGC1A are associated with a significant lower level in aerobic power (i.e., VO2 max) in insulin resistant and untrained individuals as well as in athletes. Healthy untrained adults display a large individual variation in VO2 max that ranges from -20% to more than 50%.

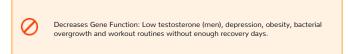
Research indicates that the exercise-induced variation in VO2 max is 47% explained by genetics. If you have heterozygous or homozygous variants in PPARGC1A, you may have a naturally lower VO2 max for aerobic exercise and increased CRP (C-reactive protein) levels.

To increase VO2 max, consider cold exposure. Since mitochondria are what give us the ability to use oxygen in order to produce cellular energy, the more we have the more the aerobic potential.

Cold exposure activates the PPARGC1A gene and PGC1® protein, which makes more mitochondria in the muscle. One study found that 15 minute exposure to cold water (50°F or 10°C) following high intensity running, increases PGC1® in muscle tissue. Another study found that men that were immersed in cold water at 50°F (10°C) for 15 minutes, 3 times a week for four weeks after running were able to increase mitochondrial biogenesis occurring in their muscle tissue.

Adaptogens are another way to increase your VO2 max. One study found that ashwagandha increased velocity, power, VO2 max, lower limb muscular strength and neuromuscular coordination. A second study used elite Indian cyclists for 8 weeks. One group received 500mg of the root extract 2x a day, while the other group received a placebo. There was significant improvement in the experimental group in all parameters, namely, VO2 max and time for exhaustion on treadmill.


A study using eleuthero root found that using 800mg for 8 weeks increased VO2 max of by 12%, endurance time improved 23%, the highest heart rate increased 4%, and metabolism was altered which spared glycogen storage. The study concluded that "this was the first well-conducted study that shows that 8-week ES supplementation enhances endurance capacity, elevates cardiovascular functions and alters the metabolism for sparing glycogen in recreationally trained males."


# Muscle Recovery-IL6

Below is a summary of your most significant variant genotypes:

| GENE          | GENOTYPE     |
|---------------|--------------|
| IL6 rs1800795 | Wild Type CC |

# Recap





### MUSCLE RECOVERY-IL6

**Research**: Exercise increases IL6 cytokines even when muscle damage hasn't occurred. It is produced in large amounts during heavy weight lifting and endurance races.

C-allele carriers of the IL6 SNP have been found to have higher creatine kinase values (a marker of muscle damage) following exercise compared with GG homozygotes.

The highest post-exercise creatine kinase levels are found after prolonged exercise such as ultra distance marathon running, weight lifting and downhill running.

To accelerate recovery, whey protein, cold water immersion, American ginseng, curcumin, optimal testosterone levels, vitamin C and collagen protein have all been found to attenuate creatine kinase levels.

Research has also found that purple sweet potatoes, cranberries, blueberries and beet root juice have verified health, performance-enhancing, and exercise recovery benefits.

Perhaps the most promising results have come from two separate studies showing decreased muscle soreness and increased recovery from cherry juice and dehydrated cherry supplements. One of these studies had subjects perform ten sets of ten repetitions at 70% of a 1-RM back squat. The researchers found that Montmorency powdered tart cherry supplementation used daily and 48 hours post-workout significantly lowered muscle soreness strength decrement during recovery, and markers of muscle catabolism throughout the 48 hour post-lifting recovery period compared to placebo.

# Muscle Injury-COL1A1

Below is a summary of your most significant variant genotypes:

| GENE             | GENOTYPE     |
|------------------|--------------|
| COL1A1 rs1800012 | Wild Type CC |

# Recap



Improves COL1A1 Gene Function: Vitamin C, zinc, copper, glycine, proline, lysine and B6 (all precursors to collagen production) and cryotherapy.



Decreases COL1A1 Gene Function: Deficiencies in vitamin C, zinc, copper, glycine, proline, lysine, B6 and excessive NSAID use.

# MUSCLE INJURY-COL1A1

**Research**: According to one study, the gene encoding for the alpha1 chain of type I collagen (COL1A1) has been shown to be associated with cruciate ligament ruptures and shoulder dislocations.

You have the CC genotype for COL1A1, which lowers the production of Type 1 collagen. Approximately 90% of collagen in the body is Type I. Type I collagen is found in the skin, tendons, corneas, lungs and in 95% of bone.

ACL ruptures are considered the most severe injury sustained in sports. The A variant produces more COL1A1. Two AA's reduced risk of ACL rupture by ten times, while only 5% of the population have two AA's.

Cryotherapy has been shown to inhibit harmful collagenase (activity on collagen enzyme that breaks down collagen) and also decreased the production of inflammatory E2 series prostaglandins. For athletes, cryotherapy post-training could be a useful tool to help prevent injuries.

# Caffeine-CYP1A2

Below is a summary of your most significant variant genotypes:

| GENE                  | GENOTYPE        |
|-----------------------|-----------------|
| CYP1A2 C164A rs762551 | Heterozygous AC |

# Recap



Increases CYP1A2 Gene Function: A higher cruciferous vegetable intake may help increase caffeine metabolism for those with the CC slow metabolizer genotype, along with exercise.



### CAFFEINE-CYP1A2

You have the heterozygous AC genotype and are considered an "intermediate metabolizer" of caffeine. This means that you do not metabolize caffeine slowly or quickly.

If you are female and taking oral contraceptives, this may reduce the clearance of caffeine. Research has shown that oral contraceptives significantly prolong the half-life of caffeine from 6.2 hours to 10.7 hours.

It is important to review your COMT gene function to better understand a sensitivity to coffee intake.

# Triglycerides-FADS1

Below is a summary of your most significant variant genotypes:

| GENE           | GENOTYPE        |
|----------------|-----------------|
| FADS1 rs174546 | Heterozygous CT |

# Recap



115

Improves FADS1 Gene Function: Higher intake of the omega-3 fatty acids EPA and DHA



# TRIGLYCERIDES-FADS1

**Research**: Variants in the FADS1 SNP (rs174546) are associated with elevated triglyceride levels, which appears to be due to a higher need for EPA and DHA from animal foods. Studies have found that plasma triglyceride levels were lower in wild-type CC genotype when compared to carriers of the minor T allele.

Population average triglyceride levels have increased since 1976 in parallel with the constant growing epidemic of obesity, insulin resistance and Type-2 diabetes. A meta-analysis of 17 population-based prospective trials including 46,413 men and 10,864 women identified plasma triglycerides levels as an independent risk factor for cardiovascular disease.

Triglycerides are essentially fat in the blood that are driven by excess sugar and carbohydrate consumption. They are the driving force behind lipoprotein particles that are potent causes of heart disease, such as small LDL and very low-density lipoprotein (VLDL).

Numerous studies have found that omega-3 fatty acids administered as fish oil supplements lowers plasma triglyceride levels by 25% to 34%. While fish oil is known to lower triglycerides, there doesn't appear to be a difference in the FADS1 genotype response to supplementation.

A meta-analysis of 13 randomized controlled trials found that 500mg of vitamin C resulted in a significant decrease in serum LDL cholesterol and triglyceride concentrations.

# **Blood Clots-F5**

Below is a summary of your most significant variant genotypes:

| GENE      | GENOTYPE        |
|-----------|-----------------|
| F5 rs6025 | Heterozygous CT |

# Recap





### **BLOOD CLOTS-F5**

**Research**: Deep vein thrombosis (DVT) is a condition that occurs when a blood clot forms in a vein deep inside a part of the body and is most common for those over 60.

Variants in F5 may increase the probability of blood clots, and therefore extra precaution should be taken for prevention. Elevated homocysteine levels and birth control like the pill and the NuvaRing increase the risk of clots. Vitamin E has been found to reduce the risk posed by Factor V Leiden, and omega-3's act as a natural anticoagulant.

### Stress-ADRB2

Below is a summary of your most significant variant genotypes:

| GENE            | GENOTYPE        |
|-----------------|-----------------|
| ADRB2 rs1042713 | Heterozygous AG |

## Recap





# STRESS-ADRB2

**Research**: ADRB2 activation regulates various biological functions, including heart rate, blood pressure or respiration, and it may modulate the vasodilatation in normal coronary arteries.

In a meta-analysis of seven case-control studies with a total of 6,843 subjects, a higher frequency of polymorphisms in rs1042713 was found with heart attacks or coronary artery disease compared to healthy controls. A similar result was also obtained with polymorphisms in rs1042714. Ethnicity-stratified subgroup analysis suggested that the rs1042714 variants correlated with an increased risk of the two diseases in both Asians and Caucasians, while rs1042713 only contributed to the risk of two diseases in Asians.

116

If cardiovascular disease runs in your family, you may be more prone to anxiety, high blood pressure and arterial damage from stress. You may also be more sensitive to beta blockers, leading to high triglycerides.

Since ADRB2 is connected to the catecholamine epinephrine, it is also important to look at your COMT gene function.

Magnesium, vitamin C and adaptogens should be considered while making lifestyle changes and strategies if chronic stress is present.

Relaxation techniques that involve slow, deep breathing have been found to be an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging.

### **Blood Pressure-ACE1**

Below is a summary of your most significant variant genotypes:

| GENE               | GENOTYPE     |
|--------------------|--------------|
| ACE1 G2350A rs4343 | Wild Type GG |

### Recap





### **BLOOD PRESSURE-ACE1**

The ACE1 rs4343 gene is characterized by a genetic deletion/insertion (D/I) polymorphism and is associated with approximately 60% of circulating and tissue concentrations of ACE. The GG genotype is associated with a higher baseline of the ACE1 enzyme in serum, AG intermediate, and AA low ACE1. High ACE1 leads to low ACE2.

The main role of ACE1 is the conversion of angiotensin I to angiotensin II, responsible for constricting blood vessels and elevating blood pressure. ACE2 degrades angiotensin II and provides balance to ACE1 by dilating blood vessels and lowering blood pressure. COVID-19 downregulates ACE2 receptors, leading to high angiotensin II levels.

High angiotensin II levels in patients with COVID-19 were significantly higher than in non-infected individuals, and more importantly, were associated with viral load and lung injury. The biological marker of this imbalance appears to be hypokalemia (low potassium).

ACE1 is on the X chromosome, and women have naturally lower levels of ACE1. Men may have a higher probability of ACE1 expressing higher due to less estrogen. A higher likelihood of ACE1 means an ACE1/ACE2 imbalance in the presence of SARS-CoV-2 infection is more likely in men and may help explain the differences in severity based on sex.

In a twins study, after six weeks of a high saturated fat diet over 37%, circulating ACE concentrations increased by 15%, accompanied by an increased ACE gene expression in adipose tissue. The homozygous carriers (GG) of the variant had higher baseline ACE concentrations. Additionally, they showed a 2-fold increase in ACE concentrations in response to the high saturated fat diet compared to the AA and AG genotype. GG carriers also responded with higher systolic blood pressure as compared to AA and AG carriers.

ACE1 inhibition has been demonstrated in research by bilberry, grapes, allicin (raw garlic), cinnamon, and jasmine.

# Phytoestrogens-TMPRSS2

Below is a summary of your most significant variant genotypes:

| GENE              | GENOTYPE     |
|-------------------|--------------|
| TMPRSS2 rs2070788 | Wild Type GG |





### PHYTOESTROGENS-TMPRSS2

Both angiotensin I converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are crucial for SARS-CoV-2 entry into host cells. While ACE2 is the main receptor for the spike protein (coronaviruses are known for their crown of spikes) of both SARS-CoV and SARS-CoV-2, mediating viral attachment to target cells, TMPRSS2 cleaves the spike protein. TMPRSS2 allows the fusion of viral and cellular membranes. This process is similar to viral activation and cell entry of other coronaviruses, including SARS-CoV and influenza viruses such as influenza H1N1.

TMPRSS2 expression is several times higher in the prostate compared with any other tissue, as well as the upper digestive and respiratory tract. ESR2 is also found in the prostate, lungs, breast, and the cardiovascular system with implications in blood clotting. TMPRSS2 acts like the shape of the keyhole, while ACE2 is the actual lock. A higher expression of TMPRSS2 means a better keyhole fit for viruses. Smoking is one way that promotes a higher expression of TMPRSS2 and increases the risk of SARS-CoV-2 infection.

In a study looking at the Italian population, expression levels of both ACE2 and TMPRSS2 were assessed. Researchers found no significant evidence that ACE2 is associated with COVID-19 severity or sex bias in the Italian population. However, TMPRSS2 levels and genetic variants proved to be possible candidate disease modulators, contributing to the observed epidemiological data among Italian patients. Genes related to higher levels of TMPRSS2 were more frequent in Italians vs. East Asian populations.

The genetic predisposition to severe pH1N1 2009 influenza virus was evaluated in Chinese human subjects, finding that the GG genotype of rs2070788 led to an increased expression of TMPRSS2, a risk variant for a severe pH1N1 influenza infection and it was significantly associated with the susceptibility to IAV H7N9 (Avian flu).

Research has found that the expression of the fusion gene TMPRSS2:ERG is thought to be responsible for up to 80% of prostate cancers, and is repressed by estrogen receptor beta (ESR2 gene) agonists. Phytoestrogens are agonists known to have up to 30-fold higher affinity for estrogen receptor beta.

Japan has exceptionally low levels of prostate cancer, and the risk rises when their traditional diet changes to a Westernized diet. The Japanese also have some of the lowest death rates from COVID-19 despite having a large elderly population. The traditional Japanese diet contains high levels of dietary phytoestrogens. Since phytoestrogens upregulate estrogen receptor beta and lower the expression of TMPRSS2, and therefore alter the keyhole for SARS-CoV-2 to enter, we may be seeing a nutrigenomic strategy in place that is slowing the virus at the door.

To decrease TMPRSS2 expression, increase your intake of phytoestrogens, curcumin, and lycopene (tomato sauce). Research has shown that curcumin binds to receptor-binding domain site of viral S protein and also to the viral attachment sites of ACE2 receptor and downregulates TMPRSS2, demonstrating that curcumin can act as potential inhibitory agent antagonizing the entry of SARS-CoV2 viral protein.

Variants in the ESR2 gene also increase the need for phytoestrogens for prostate and breast health. Post-menopausal women will also benefit from increasing phytoestrogen intake.

The best phytoestrogens in research for blood pressure and the ESR2 gene include dark berries (contains resveratrol), beans, rye, hummus, peanuts (contains resveratrol), miso soup, flax seeds (women), tahini sauce, and cruciferous vegetables (broccoli, cabbage, kale, Brussels sprouts).

| Ger             | e & Gene Function                                                                            | Gene Rsid       | Wild Type | Heterozygous | Homozygous |
|-----------------|----------------------------------------------------------------------------------------------|-----------------|-----------|--------------|------------|
| act<br>exclusiv | ACTN3 encodes for the alpha- in-3 protein found rely within type-II fast- tch muscle fibers. | ACTN3-rs1815739 | СС        |              |            |

| Gene & Gene Function                                                                                                                                                                                                       | Gene Rsid              | Wild Type | Heterozygous | Homozygous |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|--------------|------------|
| PPARGC1A  It has been demonstrated that variants in the PPARGC1A gene affect the exercise-induced change in maximal oxygen uptake (VO2).                                                                                   | PPARGC1A-<br>rs8192678 |           | СТ           |            |
| TNFA Tumor necrosis factor (TNF-a) is a pro-inflammatory cytokine. Variants may increase the risk of asthma in Asian populations.                                                                                          | TNFA-rs1800629         | GG        |              |            |
| IL6 IL6 is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine.                                                                                                                  | IL6-rs1800795          | СС        |              |            |
| SOD2  Superoxide dismutase (SOD2) is manganese dependent and protects against superoxide for the mitochondria of the cell.  The homozygous genotype increases the need for antioxidant support in high-intensity athletes. | SOD2-rs4880            |           | AG           |            |
| COL1A1  COL1A1 produces alpha 1  chain of type I collagen, a major  protein in tendons and  ligaments.                                                                                                                     | COL1A1-<br>rs1800012   | СС        |              |            |
| PON1  PON1 (Paraoxonase) plays a large role in removing pesticides. It is also involved with supporting HDL function and LDL oxidation.                                                                                    | PON1-rs662             | тт        |              |            |
| LPA Lp(a)is a sticky form of LDL that appears to affect plaque growth, LDL particle size and increase the risk of plaque rupture and blood clotting.                                                                       | LPA-rs3798220          | тт        |              |            |

| Gene & Gene Function                                                                                                                                                                 | Gene Rsid                 | Wild Type | Heterozygous | Homozygous |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------------|
| CYP1A2 C164A  Variants in CYP1A2 determine caffeine metabolism and effects on bone density and cardiovascular health.                                                                | CYP1A2 C164A-<br>rs762551 |           | AC           |            |
| 9p21 9p21 is considered an important genetic marker for cardiovascular health.                                                                                                       | 9p21-rs4977574            |           | AG           |            |
| FADS1 FADS1 is involved in fatty acid metabolism, and variants in this gene are associated with elevated triglyceride levels.                                                        | FADS1-rs174546            |           | СТ           |            |
| F5  Variants in F5 increase the risk of deep vein thrombosis, especially if using oral contraceptives.                                                                               | F5-rs6025                 |           | СТ           |            |
| ADRB2  Beta-2 adrenergic receptor (ADRB2) is abundantly expressed in cardiac cells, and bronchial smooth muscle cells and is connected to stress levels and heart health.            | ADRB2-rs1042713           |           | AG           |            |
| ACE1 G2350A  ACE1 is part of the reninangiotensin system responsible for the conversion of angiotensin I to angiotensin II, constricting blood vessels and elevating blood pressure. | ACE1 G2350A-<br>rs4343    | GG        |              |            |
| ADD1 Variants in ADD1 are associated with hypertension in Asians.                                                                                                                    | ADD1-rs4961               | GG        |              |            |

| Gene & Gene Function                                                                                                                                                                                                                                                                                                                   | Gene Rsid                 | Wild Type | Heterozygous | Homozygous |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------------|
| AGTR1  Angiotensin-II receptor type 1 (AGTR1) is a major component of the renin-angiotensin system for regulating blood pressure and is highly expressed in adipose tissue, liver, leukocytes and the intestine. The homozygous genotype may increase the risk of high blood pressure from excess dietary fat and carbohydrate intake. | AGTR1-rs5186              | AA        |              |            |
| ACE2 A8790G  ACE2 is part of the reninangiotensin system, responsible for degrading angiotensin II and providing balance to ACE1 by dilating blood vessels and lowering blood pressure.                                                                                                                                                | ACE2 A8790G-<br>rs2106809 | AA        |              |            |
| TMPRSS2 Transmembrane Serine Protease 2 is highly expressed in the prostate and lungs, and the expression is associated with viral susceptibility and prostate cancer.                                                                                                                                                                 | TMPRSS2-<br>rs2070788     | GG        |              |            |

# Sources

Please click the link below if you'd like to browse peer-reviewed studies referenced by this analysis:

https://www.mydna.life/wp-content/uploads/myDNA-Comprehensive-Health-Report-references.pdf